
LEARNING RULES AND EXCEPTIONS FOR REGRESSION: THE REXALGORITHM
byZafer Barut�uo�gluB.A., in Mathematis, Bo�gazi�i University, 2000

Submitted to the Institute for Graduate Studies inSiene and Engineering in partial ful�llment ofthe requirements for the degree ofMaster of SieneinComputer Engineering
Bo�gazi�i University2002

ii
LEARNING RULES AND EXCEPTIONS FOR REGRESSION: THE REXALGORITHM

APPROVED BY:
Asso. Prof. Dr. Ethem Alpayd�n(Thesis Supervisor)Asso. Prof. Dr. Lale AkarunProf. Dr. G�unhan D�undar

DATE OF APPROVAL: 13.06.2002

iiiACKNOWLEDGEMENTS
First of all, I am grateful to my wife It�r who patiently endured the ountlessdays and nights of my thesis work and heered me up when all the numbers seemedwrong, as I worked away a year of our youth. She has put into this thesis more thanshe is aware of. Not to mention the deliious late night snaks, ie ream and o�ee.I am indebted beyond words to my thesis supervisor Ethem Alpayd�n for givingme this opportunity and his preious time. I shall forever try to be worthy of hison�dene in me. Under his guidane this researh has been a thoroughly enjoyableand inspirational experiene.I would like to thank Lale Akarun and G�unhan D�undar for partiipating in mythesis jury and their areful reviews of the manusript.A. Safa Topba�s and the fellow developers at Turk Nokta Net all deserve mygratitude for their hearty support.

ivABSTRACT
LEARNING RULES AND EXCEPTIONS FORREGRESSION: THE REX ALGORITHM

The human mind models many onepts as a general rule and a few spei� ex-eptions. The rule is simple and overs most ases, and the exeptions allow learningobsure examples while still keeping the rule simple and useful. The algorithm REx(Rules and Exeptions) applies the same paradigm to mahine learning to produe anaurate and interpretable learning model. Previously explored for lassi�ation withsuess, REx is adapted in this thesis to regression problems. Using another simpleralgorithm as a base rule, it determines a set of exeptions in the training data, andaugments the rule by nondestrutively inorporating the exeptions as loal experts.Both ollaborative and mixture ombination shemes are explored, with a possibleimprovement through �nding lusters of exeptions. Also inluded are detailed exam-inations of Bagging, AdaBoost variants and Support Vetor Mahines for regression,beause of their relation to REx in emphasizing some examples more than others. Sim-ulations on several datasets provide empirial support for the disussion omparing allalgorithms. The results indiate that while the mixture version of REx su�ers fromertain strutural drawbaks that hinder onsistent learning, the ollaborative versionahieves satisfatory performane, espeially with simple rules.

v�OZET
REGRESYON _IC� _IN KURAL VE _IST_ISNALARIN�O�GREN_ILMES_I: REX ALGOR_ITMASI
_Insan zihni bir�ok kavram� genel bir kural ve birka� istisna olarak �sekillendirir.Kural basit olup �o�gu durumda ge�erliyken, istisnalar kural�n basitli�gini ve kullan��sl�l�-�g�n� bozmadan s�rad��s� �orneklerin de �o�grenilebilmesini sa�glar. REx algoritmas� ba�sar�l�ve anla�s�labilir bir �o�grenme modeli olu�sturmak i�in ayn� prensibi yapay �o�grenmeyeuygular. Daha �one s�n�and�rma i�in inelenmi�s ve ba�sar�ya ula�sm��s olan REx butezde regresyon problemlerine, yani ��kt�s� s�urekli problemlere uyarlanmaktad�r. Dahabasit ba�ska bir algoritmay� temel kural olarak kullanarak �o�grenme verilerinden birdizi istisna belirlenir, ve istisnalar� yerel uzmanlar olarak ekleyerek kural bozulmadangeni�sletilir. Tezde hem i�sbirlik�i hem de kar��s�m birle�stirme senaryolar� inelenmekte,ve yo�gun istisna gruplar�n� bulmaya dayanan bir ek anlat�lmaktad�r. Ayn� zamanda,baz� �ornekleri vurgulamak y�on�unden REx ile ilintili olduklar�ndan, regresyon ama�l�Bagging, AdaBoost �e�sitleri ve Destek Vekt�or�u Makinalar� da detayl� olarak inelen-mektedir. T�um algoritmalar� kar�s�la�st�ran tart��smalar �e�sitli veri k�umeleri �uzerindeyap�lan benzetimlerden gelen deneysel de�gerlerle desteklenmektedir. Al�nan sonu�larag�ore, REx'in kar��s�m t�ur�u tutarl� �o�grenmeyi zorla�st�ran baz� yap�sal sorunlar i�erirken,i�sbirlik�i hali �ozellikle basit kurallar kullan�ld��g�nda tatmin edii ba�sar�ya sahiptir.

viTABLE OF CONTENTS
ACKNOWLEDGEMENTS : iiiABSTRACT : iv�OZET : vLIST OF FIGURES : viiiLIST OF TABLES : xviLIST OF SYMBOLS/ABBREVIATIONS : xix1. INTRODUCTION : 12. BAGGING AND ADABOOST : 32.1. Model Aggregation . 42.2. Bagging . 42.2.1. Best-Ratio Bagging . 62.2.2. Weighted Bagging . 72.2.3. Cross-Validation Aggregating (CVA) 72.3. The AdaBoost Approah . 82.3.1. AdaBoost.R . 102.3.2. Distribution-Based Algorithms 122.3.2.1. Druker's AdaBoost 122.3.2.2. The Zemel-Pitassi Algorithm (using square loss) . . 152.3.3. Relabeling Algorithms . 162.3.3.1. The LS Boost Algorithm 162.3.3.2. The LAD Boost Algorithm 183. SUPPORT VECTOR MACHINES : 213.1. Overview . 213.2. The Linear Problem . 223.3. A Solution Strategy . 233.4. Nonlinear Kernels . 253.5. Tuning Insensitivity . 283.6. Remarks . 294. REX : 30

vii4.1. Partitioning . 304.2. Combining . 314.3. Collaborative REx . 324.3.1. Linear Rule . 324.3.2. MLP Rule . 344.4. Mixture REx . 354.5. Clustering . 365. SIMULATION RESULTS : 395.1. Datasets and Methodology . 395.2. Base Algorithm Results . 425.3. Bagging and AdaBoost Results . 465.4. Support Vetor Mahine Results . 515.5. REx Results . 535.6. Overall Comparison . 575.7. Complexity Analysis . 816. CONCLUSIONS AND FUTURE WORK : 83APPENDIX A: EXTRA FIGURES : 86A.1. Base Algorithm Errors . 86A.2. Outputs on syndata . 88A.2.1. Base Models on syndata . 88A.2.2. C-REx on syndata . 90A.2.3. C-REx on syndata . 91A.2.4. C-REx with Clustering on syndata 92A.2.5. MREx with Clustering on syndata 93A.3. Thresholds . 94A.3.1. CREx Thresholds . 94A.3.2. MREx Thresholds . 104A.3.3. C-REx Thresholds with Clustering 114A.3.4. M-REx Thresholds with Clustering 120A.4. Bagging and AdaBoost Errors . 126A.5. Time Complexities . 130REFERENCES : 147

viiiLIST OF FIGURES
Figure 2.1. The Bagging algorithm (for regression) 5Figure 2.2. The Best-Ratio Bagging algorithm 6Figure 2.3. The Cross-Validation Aggregating (CVA) algorithm 7Figure 2.4. The original AdaBoost.R . 11Figure 2.5. Druker's AdaBoost algorithm . 13Figure 2.6. Zemel & Pitassi's algorithm . 14Figure 2.7. The LS Boost algorithm . 17Figure 2.8. The LAD Boost algorithm . 19Figure 3.1. The Support Vetor Regression algorithm 27Figure 4.1. REx: Determining exeptions . 31Figure 4.2. Network diagram of C-REx using linear rule 33Figure 4.3. Network diagram of C-REx using MLP rule 34Figure 4.4. Network diagram of M-REx using linear rule 37Figure 4.5. Network diagram of M-REx using MLP rule 37Figure 4.6. REx: Finding exeption lusters 38

ixFigure 5.1. Dataset syndata (1000 examples) 40Figure 5.2. The J-leaf Regression Tree algorithm 43Figure 5.3. Base algorithm errors for syndata 44Figure 5.4. Base algorithm errors for votes 44Figure 5.5. Base algorithm errors for birth 45Figure 5.6. 15-leaf regression tree output on syndata 46Figure 5.7. 5-hidden-unit MLP output on syndata 47Figure 5.8. Bagging and AdaBoost errors on syndata using 5-leaf trees 48Figure 5.9. Bagging and AdaBoost errors on syndata using 15-leaf trees . . . 48Figure 5.10. Bagging output on syndata using 15-leaf trees 50Figure 5.11. Druker.AD output on syndata using 15-leaf trees 50Figure 5.12. LS Boost output on syndata using 15-leaf trees 51Figure 5.13. SVM output on syndata with � = 0:02 and = 5 52Figure 5.14. SVM output on syndata with � = 0:05 and = 5 52Figure 5.15. SVM output on syndata with � = 0:05 and = 10 53Figure 5.16. C-REx output on syndata with 2-hidden-unit MLP rule and " = 6without lustering . 54

xFigure 5.17. C-REx output on syndata with linear rule and " = 1:8 with 10 lus-ters . 56Figure 5.18. M-REx output on syndata with linear rule and " = 1:4 with10 lusters . 56Figure 5.19. C-REx output on syndata with 2-hidden-unit MLP rule and " =1:4 with 10 lusters . 57Figure 5.20. M-REx output on syndata with 2-hidden-unit MLP rule and " =1:4 with 10 lusters . 58Figure 5.21. Error and omplexity on kin8fm 82Figure A.1. Base algorithm errors . 86Figure A.2. Base algorithm errors (ontinued) 87Figure A.3. Linear and MLP models on syndata 88Figure A.4. Regression tree models on syndata 89Figure A.5. C-REx without lustering on syndata 90Figure A.6. M-REx without lustering on syndata 91Figure A.7. C-REx with lustering on syndata 92Figure A.8. M-REx with lustering on syndata 93Figure A.9. C-REx thresholds on syndata . 94

xiFigure A.10. C-REx thresholds on boston . 95Figure A.11. C-REx thresholds on alif1000 96Figure A.12. C-REx thresholds on prostate 97Figure A.13. C-REx thresholds on votes . 98Figure A.14. C-REx thresholds on birth . 99Figure A.15. C-REx thresholds on kin8fm . 100Figure A.16. C-REx thresholds on kin8fh . 101Figure A.17. C-REx thresholds on kin8nm . 102Figure A.18. C-REx thresholds on kin8nh . 103Figure A.19. M-REx thresholds on syndata . 104Figure A.20. M-REx thresholds on boston . 105Figure A.21. M-REx thresholds on alif1000 106Figure A.22. M-REx thresholds on prostate 107Figure A.23. M-REx thresholds on votes . 108Figure A.24. M-REx thresholds on birth . 109Figure A.25. M-REx thresholds on kin8fm . 110

xiiFigure A.26. M-REx thresholds on kin8fh . 111Figure A.27. M-REx thresholds on kin8nm . 112Figure A.28. M-REx thresholds on kin8nh . 113Figure A.29. C-REx thresholds with lustering on syndata and boston 114Figure A.30. C-REx thresholds with lustering on alif1000 and votes 115Figure A.31. C-REx thresholds with lustering on prostate and abalone . . . 116Figure A.32. C-REx thresholds with lustering on birth and kin8fm 117Figure A.33. C-REx thresholds with lustering on kin8fh and kin8nm 118Figure A.34. C-REx thresholds with lustering on kin8nh 119Figure A.35. M-REx thresholds with lustering on syndata and boston 120Figure A.36. M-REx thresholds with lustering on alif1000 and votes 121Figure A.37. M-REx thresholds with lustering on prostate and abalone . . . 122Figure A.38. M-REx thresholds with lustering on birth and kin8fm 123Figure A.39. M-REx thresholds with lustering on kin8fh and kin8nm 124Figure A.40. M-REx thresholds with lustering on kin8nh 125Figure A.41. Bagging and AdaBoost on syndata, boston and alif1000 126

xiiiFigure A.42. Bagging and AdaBoost on prostate, votes and birth 127Figure A.43. Bagging and AdaBoost on abalone, kin8fm and kin8fh 128Figure A.44. Bagging and AdaBoost on kin8nm and kin8nh 129Figure A.45. Error/Complexity of C-REx on syndata 130Figure A.46. Error/Complexity of M-REx on syndata 130Figure A.47. Error/Complexity of C-REx on boston 131Figure A.48. Error/Complexity of M-REx on boston 131Figure A.49. Error/Complexity of C-REx on alif1000 132Figure A.50. Error/Complexity of M-REx on alif1000 132Figure A.51. Error/Complexity of C-REx on votes 133Figure A.52. Error/Complexity of M-REx on votes 133Figure A.53. Error/Complexity of C-REx on prostate 134Figure A.54. Error/Complexity of M-REx on prostate 134Figure A.55. Error/Complexity of C-REx on abalone 135Figure A.56. Error/Complexity of M-REx on abalone 135Figure A.57. Error/Complexity of C-REx on birth 136

xivFigure A.58. Error/Complexity of M-REx on birth 136Figure A.59. Error/Complexity of C-REx on kin8fm 137Figure A.60. Error/Complexity of M-REx on kin8fm 137Figure A.61. Error/Complexity of C-REx on kin8fh 138Figure A.62. Error/Complexity of M-REx on kin8fh 138Figure A.63. Error/Complexity of C-REx on kin8nm 139Figure A.64. Error/Complexity of M-REx on kin8nm 139Figure A.65. Error/Complexity of C-REx on kin8nh 140Figure A.66. Error/Complexity of M-REx on kin8nh 140Figure A.67. Error/Complexity on syndata . 141Figure A.68. Error/Complexity on boston . 141Figure A.69. Error/Complexity on alif1000 142Figure A.70. Error/Complexity on votes . 142Figure A.71. Error/Complexity on prostate 143Figure A.72. Error/Complexity on birth . 143Figure A.73. Error/Complexity on kin8fm . 144

xvFigure A.74. Error/Complexity on kin8fh . 144Figure A.75. Error/Complexity on kin8nm . 145Figure A.76. Error/Complexity on kin8nh . 145Figure A.77. Error/Complexity on abalone . 146

xviLIST OF TABLES
Table 5.1. Properties of the datasets used . 40Table 5.2. Errors of Bagging and AdaBoost on syndata 60Table 5.3. Errors of SVM and REx on syndata 60Table 5.4. Errors of Bagging and AdaBoost on boston 61Table 5.5. Errors of SVM and REx on boston 61Table 5.6. Errors of Bagging and AdaBoost on alif1000 62Table 5.7. Errors of SVM and REx on alif1000 62Table 5.8. Errors of Bagging and AdaBoost on votes 63Table 5.9. Errors of SVM and REx on votes 63Table 5.10. Errors of Bagging and AdaBoost on prostate 64Table 5.11. Errors of SVM and REx on prostate 64Table 5.12. Errors of Bagging and AdaBoost on birth 65Table 5.13. Errors of SVM and REx on birth 65Table 5.14. Errors of Bagging and AdaBoost on abalone 66Table 5.15. Errors of SVM and REx on abalone 66

xviiTable 5.16. Errors of Bagging and AdaBoost on kin8fm 67Table 5.17. Errors of SVM and REx on kin8fm 67Table 5.18. Errors of Bagging and AdaBoost on kin8fh 68Table 5.19. Errors of SVM and REx on kin8fh 68Table 5.20. Errors of Bagging and AdaBoost on kin8nm 69Table 5.21. Errors of SVM and REx on kin8nm 69Table 5.22. Errors of Bagging and AdaBoost on kin8nh 70Table 5.23. Errors of SVM and REx on kin8nh 70Table 5.24. 5� 2v F -test of Bagging and AdaBoost on syndata 71Table 5.25. 5� 2v F -test of Bagging and AdaBoost on boston 71Table 5.26. 5� 2v F -test of Bagging and AdaBoost on alif1000 72Table 5.27. 5� 2v F -test of Bagging and AdaBoost on votes 72Table 5.28. 5� 2v F -test of Bagging and AdaBoost on prostate 73Table 5.29. 5� 2v F -test of Bagging and AdaBoost on birth 73Table 5.30. 5� 2v F -test of Bagging and AdaBoost on abalone 74Table 5.31. 5� 2v F -test of Bagging and AdaBoost on kin8fm 74

xviiiTable 5.32. 5� 2v F -test of Bagging and AdaBoost on kin8fh 75Table 5.33. 5� 2v F -test of Bagging and AdaBoost on kin8nm 75Table 5.34. 5� 2v F -test of Bagging and AdaBoost on kin8nh 76Table 5.35. 5� 2v F -test of SVM and REx on syndata 77Table 5.36. 5� 2v F -test of SVM and REx on boston 77Table 5.37. 5� 2v F -test of SVM and REx on alif1000 77Table 5.38. 5� 2v F -test of SVM and REx on votes 78Table 5.39. 5� 2v F -test of SVM and REx on prostate 78Table 5.40. 5� 2v F -test of SVM and REx on birth 78Table 5.41. 5� 2v F -test of SVM and REx on abalone 79Table 5.42. 5� 2v F -test of SVM and REx on kin8fm 79Table 5.43. 5� 2v F -test of SVM and REx on kin8fh 79Table 5.44. 5� 2v F -test of SVM and REx on kin8nm 80Table 5.45. 5� 2v F -test of SVM and REx on kin8nh 80Table 5.46. Time omplexities of evaluation 81

xixLIST OF SYMBOLS/ABBREVIATIONS
i Combination oeÆient for model id Input attribute indexD Number of input attributesE Error funtionF (�) Rule modelgtj Softmax output of Gaussian unit j for example thtk Output of sigmoidal hidden unit k for example ti Model indexj Gaussian unit indexJ Number of leaf nodes; number of exeptionsk Hidden unit indexK Number of hidden units; number of lustersL Loss funtionN Number of training examplesptj Output of Gaussian unit j for example trt Training label of example tTk Weight of hidden unit kvj Weight of Gaussian unit jwk Input weight vetor of hidden unit kwkd Weight of input attribute d on hidden unit kxt Input vetor of example txtd Input attribute d of example tX Training setyt Model output for example t" Error threshold� Learning rate�j Mean vetor of Gaussian unit j�jd Mean vetor attribute d of Gaussian unit j

xx�j Standard deviation of Gaussian unit jln Logarithm to base eMLP Multi-Layer PereptionSVM Support Vetor Mahine

11. INTRODUCTION
The task of supervised mahine learning onsists of approximating an unknowntarget funtion for whih the outputs are known only for ertain inputs. Every learningalgorithm assumes a model for the andidate funtions among whih the best approxi-mation to the target funtion will be sought. The model is de�ned by a set of modelparameters, whih are to be determined using a set of known input-output pairs (alledthe training set). This is inherently an ill-posed problem, sine the training set by it-self does not speify the target funtion ompletely. There may be in�nitely manypossible andidate funtions that all omply with the given data but di�er elsewhere.Di�erent learning algorithms make di�erent assumptions about the unseen data andthe target funtion, and arrive at di�erent solutions. The �nal preditive auray of amodel depends on how well the algorithm's assumptions hold for the given data. Sinethere is no simple \silver bullet" algorithm, the mahine learning pratitioner needs tomaintain a toolbox of existing algorithms, with an understanding of whih to apply towhat kind of data.Learning problems are often ategorized into two types, as lassi�ation andregression. Classi�ation is when the output range of the target funtion is a �niteset of values, sine the funtion e�etively plaes the given input into one of a numberof lasses. Otherwise, if the output is from a (possibly in�nite) range of ontinuousvalues, the learning proess is alled regression, or funtion approximation.The algorithm REx (Rules and Exeptions) was originally proposed in [1℄, andanalyzed for lassi�ation tasks in [2, 3, 4, 5℄, with signi�ant theoretial and empirialresults. In this work, we extend the algorithm to regression problems, and ompare itto Bagging, AdaBoost variants and Support Vetor Mahines.REx works by seleting some of the training examples as exeptions. This ap-proah of isolating \diÆult" examples is reminisent of the well-known AdaBoost andSupport Vetor Mahine methods. REx has a rule algorithm given to it, and it uses the

2rule to �rst determine the exeptions. Then plaing Gaussian units entered at eahexeption, it produes a ombined network model of the rule model and the exeptionunits. Finally, the whole ombined model is trained together, so that the rule is awareof the exeptions and does not try to �t them. The Gaussian means and varianes arealso allowed to hange, adjusting to the rule in turn. If there are too many exeptions,they an be redued by lustering. Two di�erent versions of REx are proposed. Col-laborative REx uses a linear ombination of the rule and the exeption outputs, whileMixture REx gives a Gaussian unit also to the rule and uses the softmax funtion onthe outputs to make a single exeption or the rule signi�antly more ative than othersat a given time.This thesis is organized as follows. Setion 2 desribes AdaBoost and its preursorBagging. Various AdaBoost alternatives for regression are explored, in addition toseveral variations proposed on the Bagging theme.Setion 3 is devoted to Support Vetor Mahines. The topi is motivated be-ginning with the linear ase, and then extended by introduing the use of nonlinearkernels. A variant with automati insensitivity determination is also desribed.Setion 4 desribes the novel algorithm REx in detail. The Collaborative RExand Mixture REx versions are derived, with the omplete set of gradient desent up-date equations inluded for both a linear rule and a Multi-Layer Pereptron rule foreah version. The setion onludes with an improvement for eliminating redundantexeptions by lustering.Setion 5 is about the simulations, where we desribe our experiments and presentthe results on various datasets. The algorithm families are ompared with eah otherand among themselves. Exemplar outputs on a syntheti dataset are plotted to illus-trate the atual behaviors of the algorithms.Setion 6 draws onlusions from the results and points in possible diretions forfuture work.

32. BAGGING AND ADABOOST
While some algorithms always produe the same solution for the same trainingdata, others inlude a random element. For example, a ommon approah is to startwith a randomly initialized model, and iteratively update its parameters until themodel gives the orret outputs to the training examples. The randomness introduesa variane to the algorithm; multiple runs of the same algorithm on the same trainingset may onverge to di�erent solutions.Another issue is stability with respet to small hanges in training data. Ideally,a training set should perfetly illustrate the behavior of the target funtion over thewhole input spae. Hene, two training sets for the same problem should produeidential solutions. However, in pratie training data is �nite, and often ontainsnoise resulting in inorret attribute values. The existene or nonexistene of evenone partiular example in a �nite training set may be signi�ant enough to produedi�erent model instanes at the end of training.Combining learners is a way to ahieve robustness to hanges in model assump-tions, initial parameters, training set perturbations and noise. Di�erent models an beheterogeneously ombined to be able to sueed in union when the inherent struturalassumptions of some do not hold. Similarly to redue the overall sensitivity to di�er-ent starting parameters and noisy training examples, multiple instanes of the samemodel an be ombined. For the latter, two well-known algorithms are Bagging [6℄ andAdaBoost [7, 8℄.Model aggregation algorithms have been proposed and analyzed for lassi�ationin muh more detail than regression, possibly due to the wider availability of real-lifeappliations. Adapting lassi�ation algorithms to regression, while trivial for manyother mahine learning methods, raises some issues in this setting.In this setion we desribe the Bagging and AdaBoost algorithms and several

4variants in the ontext of regression.2.1. Model AggregationThe algorithms disussed below are sometimes alled master algorithms beausethey take another algorithm as the base algorithm and improve its performane.Their ommon approah is to reate multiple model instanes using the giventraining data, whih are ombined to get an aggregate model. The new model ombinesthe outputs of the base models to form its output.A master algorithm f uses a base algorithm g, and its own parameters �f toprodue an aggregate model H for a training set X . The aggregate model onsists of aset of k instanes for the base model h (de�ned by their parameters �hk) whose outputsare ombined by an aggregation funtion F (parameterized by �F) for evaluation:f(X ; g;�f) = �H = (f�hkgKk=1; �F) (2.1)
H(x; �H) = F (fh(x; �hk)gKk=1; �F) (2.2)

2.2. BaggingBootstrapping is a method for reating many di�erent training subsets from asingle training set. The subsets, alled the bootstrap samples, are formed by randomlyseleting with replaement a �xed number of examples from the original training set.Random seletion with replaement allows examples to be in more than one subset, oreven opied multiple times in the same subset. This enables the bootstrap samples tobe adequately dissimilar while providing the freedom to keep their size usefully large.The Bagging (Bootstrap Aggregating) algorithm [6℄ uses bootstrapping on the

5� Training� For eah hi of K base models� Randomly selet with replaement M examples from the training set.� Train base model hi using the seleted examples.� Evaluation� Given input x, for eah base model hi� Evaluate base model output yi = hi(x)� Output the mean y = 1K PKi=1 yiFigure 2.1. The Bagging algorithm (for regression)training set to reate many varied but overlapping training sets. The base algorithmis used to reate di�erent base model instanes using eah bootstrap sample.K samples Xi are reated from the training set X , eah ontaining M examplesseleted randomly with replaement using uniform probabilities. Every sample Xi islearned by a di�erent base model instane hi, and the ensemble output is the averageof all base model outputs for a given input:H(x) = 1K KXi=1 hi(x) (2.3)
The algorithm is shown in Figure 2.1.The best auray enhanement by Bagging is when the onstruted base modelinstanes are very di�erent from eah other. Averaging does not have muh e�et whenthe outputs are already lose. Hene, the most suitable base models for Bagging areunstable models, where small hanges in the training set an result in large hanges in

6� Training� Remove M of the N training examples to use for validation.� For eah ratio rj 2 [0; 1℄ in the given ratio set� Construt Bagging model bj using samples of size rj(N �M).� Evaluate bj on the M unused validation examples to get error ej.� Choose Bagging model bj with the smallest validation error ej.Figure 2.2. The Best-Ratio Bagging algorithmmodel parameters. Multi-layer pereptrons and regression trees are good andidates.2.2.1. Best-Ratio BaggingThe partiular bootstrap sample size being used has an e�et on the performaneof Bagging. A very large sample size makes the samples too similar to bene�t fromaveraging, while seleting them too small produes diverse but very poor base modelswhih might not be remedied enough by averaging. The optimal ratio of bootstrapsample size to training set size depends on the partiular data being used. Largetraining sets will need smaller ratios, while ompliated data will all for a larger ratiothan simple data. Instead of �netuning this ratio by hand for eah appliation, wepropose a method for automating a oarse adjustment.Best-Ratio Bagging removes a number of randomly seleted examples from thetraining set as a validation set V, and performs multiple Bagging instanes on theremaining training set X 0 for a range of bootstrap sample size to training set sizeratios rj, j = 1; : : : ; J . Eah Bagging run uses the same training data X 0, only with adi�erent bootstrapping ratio rj. The resulting Bagging models are ompared by theirerrors on the validation set V, and the Bagging model with the lowest validation erroris hosen as the �nal model.

7� Training� Randomly divide the training set into K equal partitions.� For eah hi of K base models� Train base model hi using all examples exept those in partition i.Figure 2.3. The Cross-Validation Aggregating (CVA) algorithmIn the AdaBoost family of algorithms sample size is usually taken equal to thetraining set size, sine the adaptive parameters make variation by subsetting obsolete.In omparison to Bagging this leaves us with one less free algorithm parameter to bemanually adjusted. It also reates a problem for omparing AdaBoost algorithms andBagging as peers, beause we will have multiple ases of Bagging to ompare with asingle AdaBoost instane. Best-Ratio Bagging is useful for illustrating the best aseperformane of Bagging with respet to sample size in suh omparisons.2.2.2. Weighted BaggingBagging takes a simple average of base model outputs. Without radially modi-fying the training proedure, only the evaluation part of AdaBoost an be adopted touse a weighted median instead. The weights (on�denes) an be alulated as in Ad-aBoost, using average loss with respet to a loss funtion of hoie. See Setion 2.3.2.1for the omputation of on�dene and weighted median.2.2.3. Cross-Validation Aggregating (CVA)For the purpose of produing multiple similar but perturbed subsets from onetraining set, K-fold ross-validation is an alternative to bootstrapping. Instead ofusing random sampling to reate the subsets, the training set X is randomly dividedinto K equally sized parts Vi, and eah training subsets are set to be Xi = X � Vi.That is, eah base model hi is trained using the examples not in Vi. We will all this

8algorithm Cross-Validation Aggregating (see Figure 2.3). Evaluation is as in Bagging,ombining the base outputs by averaging.As opposed to random seletion with replaement in bootstrapping, ross-valid-ation is guaranteed to use all training examples exatly one in exatly K � 1 subsets.For small K, this leads to more eÆient use of data than bootstrapping whih mightskip some examples and use others multiple times beyond neessity.However as K inreases, the base models are trained on inreasingly similar sub-sets, whih should derease the positive e�et of ombining. The extreme ase isleave-one-out ross-validation where for a training set of size N there are N subsets ofsize N � 1, eah exluding a single di�erent example. For all but the smallest trainingsets, the subsets will be almost idential, probably learning the same model with eahother and the original set, and not muh will be gained by aggregating them.The only random step in CVA is the partitioning of examples, and this relativedeterminism in omparison to Bagging suggests that for multiple runs on the samedata, CVA is more likely to produe similar models. That is, the ensemble modelgenerated by CVA should have less variane over multiple runs. In this sense, CVAshould be more stable than Bagging.Note that there is no parameter in CVA orresponding to the bootstrap sampleratio, sine the number of subsets determines the subset size.2.3. The AdaBoost ApproahThe sampling proedure of Bagging assigns an equal probability of seletion toeah example for eah sample. Sine individual samples, and hene the models theytrain, are independent of eah other, their olletive suess is through mere redun-dany. The boosting approah di�ers from Bagging by using the base models in ativeollaboration, working to ompensate for the de�ienies of one another. The generalidea is to learn a group of models in sequene, where eah model onentrates more on

9the examples where the previous model had high error. Di�erent ways of realizing thisdynami fous leads to di�erent boosting algorithms.AdaBoost (Adaptive Boosting) [7, 8℄ is an eÆient and popular implementation ofthe boosting priniple. Like boosting in general, AdaBoost has been spei�ed, appliedand analyzed with muh deeper interest for lassi�ation than for regression.The original AdaBoost lassi�ation algorithm improves on Bagging by attempt-ing to selet examples more intelligently. Sampling is now sequential, one sample beingseleted after another, and eah sample is seleted using probabilities a�eted by theprevious samples. Seletion is still random with replaement, but aording to dy-nami probabilities assigned to eah training example. For the �rst sample all exampleprobabilities are initialized to be equal, as in Bagging. The �rst model is trained onthis sample, and tested on the whole training set. Examples mislassi�ed by the �rstmodel are then updated to have a higher probability of being seleted for the subse-quent sample. In suession, eah model tries to orret the errors of the previous one,and the overall ombined model is ontinuously omplemented where most neessary.With the exibility in output labels, regression allows greater freedom in on-struting algorithms. The basi onept of AdaBoost, relatively onstrained in lassi-�ation, an be generalized in more than one way for regression.In their work introduing AdaBoost, Freund & Shapire [7℄ inlude a version forregression (AdaBoost.R) whih disretizes eah regression predition into many two-lass lassi�ations. However, motivated from a theoretial onstrution, it has toosevere restritions to be useful in pratie, as we shall examine.More on the lines of lassi�ation AdaBoost, Druker [9℄ and Zemel & Pitassi[10℄ give distribution-based algorithms where, like Bagging, all models learn the atualtraining labels. The dynami parameters are salar example seletion probabilities,adjusted as in lassi�ation.

10Yet another group of algorithms [11, 12, 13℄, although from di�erent viewpoints,all aim to minimize residual error through the iterations. The �rst model tries to learnthe atual training outputs, but the next model is trained to predit the di�erenesbetween the �rst model's outputs and the atual targets. Proeeding this way, ateah step the new model learns the error remaining from the previous models. Unlikelassial AdaBoost, in these relabeling algorithms the seletion probabilities are notneessarily dynami, but training labels are, so the models are not trained to learn thesame funtion.For our experiments we use the originally proposed AdaBoost.R from thedynami-loss algorithms, both Druker's and Zemel & Pitassi's �xed-label algorithms,and Friedman's residual methods LAD Boost and LS Boost.2.3.1. AdaBoost.RThe original AdaBoost adaptation for regression AdaBoost.R suggested along-side the lassi�ation algorithm is based on deomposing the regression problem intoin�nitely many lassi�ation tasks, where for eah output value a lassi�er deideswhether the output is above or below [7℄. This theoretial foundation does lead to afeasible implementation, but involves keeping trak of updatable and integrable lossfuntions, di�ering for eah example. Furthermore, the base learner must be able toaommodate suh dynami loss, rede�nable per example. The original suggestion isto initialize the loss funtions as absolute di�erene from a enter value in whih asethe funtion stays pieewise linear through the pieewise multipliative updates. Thisdynami-loss approah is also adopted by Ridgeway et al. [14℄ where the dynami lossfuntions are disretely approximated and initialized to Laplae distributions. How-ever their experiments on various datasets using naive Bayes base learners yield nosigni�ant justi�ation to a�ord a per-example rede�nable loss, seriously onstrainingthe hoie of base learners if not time omplexity.The algorithm is given in Figure 2.4 with modi�ed notation. In our implementa-tion we use disrete approximations to the weight distributions. Also we linearly sale

11
� Training� For eah training example (xt; rt) where t = 1; : : : ; N� Initialize weight distribution w1t;y jy � rtj.� For eah base model hi where i = 1; : : : ; K� Normalize weight distributions wit;y wit;yZ .where Z = PNt=1 R 10 jy � rtjdy.� Train base model hi using the example distributions wit;y.� Evaluate the base model outputs yti = hi(xt).� Calulate the average loss Li = PNt=1 j R ytirt wit;ydyj� Calulate i = ln(1�LiLi).� Update distributionswi+1t;y = 8><>: wit;y if rt � y � yti or yti � y � rtwit;y exp(�i) otherwise� Evaluation� Given input x, for eah base model hi� Evaluate base model output yi = hi(x)� Output the weighted medianH(x) = inffyi : Pj:yj�yi j � 12 Pj jgFigure 2.4. The original AdaBoost.R [7℄

12our training outputs to [0; 1℄ as the algorithm requires.2.3.2. Distribution-Based Algorithms2.3.2.1. Druker's AdaBoost. Druker's AdaBoost algorithm [9℄ is given in Figure 2.5.The �rst sample is seleted uniform randomly, as in Bagging. The model generatedby this sample then evaluates all examples in the training set, and the seletion prob-abilities are modi�ed to favor examples with high error. Thus the next model will betrained where the �rst model was weak. This proess is repeated, eah model mod-ifying the probabilities for the next model, until all K models are onstruted. Theensemble output is the weighted median of the base model outputs, weighted by themodels' training on�denes.The notation in Figure 2.5 is rearranged from the original to resemble the algo-rithm Zemel-Pitassi for omparison, although the algorithm remains unhanged. Anelement's probability hanges with two fators: the loss it inurs alone and the average(weighted) loss over all examples in that iteration.At eah step i the algorithm minimizes the error funtionJi = NXt=1 1exp(i) exp �iLti� (2.4)by minimizing per-example losses. Note that another parameter of the funtion is i, ameasure of on�dene over all examples, also used as the ombination oeÆient duringevaluation. While Druker's AdaBoost hoosesi = ln 1� LiLi ! (2.5)to minimize error, this appears to be an ad ho adoption of the analytial result fromthe similar error funtion in lassi�ation.For the per-example loss funtion three andidates were suggested: linear loss L =

13
� Training� For eah training example (xt; rt) where t = 1; : : : ; N� Initialize probability pt 1N .� For eah base model hi where i = 1; : : : ; K� Randomly selet N training examples with replaement,where the seletion probability of example t is pt.� Train base model hi using the seleted examples.� For eah example in the training set,� Evaluate the base model output yti = hi(xt).� Calulate the loss Lti = L(jyti � rtj) 2 [0; 1℄e.g. a linear loss Lti = jyti � rtj= supj jytj � rtj� Calulate the average loss Li = PNt=1 Ltipt� Set i = ln(1�LiLi).� Calulate J ti = 1exp(i) exp (iLti)� Update probabilities pt ptJ ti .� Normalize probabilities pt pt=PNj=1 pj.� Evaluation� Given input x, for eah base model hi� Evaluate base model output yi = hi(x)� Output the weighted median of yi by iH(x) = inffyi : Pj:yj�yi j � 12 Pj jgFigure 2.5. Druker's AdaBoost algorithm [9℄

14� Training� For eah training example (xt; rt) where t = 1; : : : ; N� Initialize probability pt 1N .� For eah base model hi where i = 1; : : : ; K� Randomly selet N training examples with replaement,where the seletion probability of example t is pt.� Train base model hi using the seleted examples.� For eah example in the training set,� Evaluate the base model output yti = hi(xt).� Set 0 < i � 1 to minimize Pt J ti (using line searh)where J ti = 1pi exp [ijyti � rtj2℄� Update probabilities pt ptJ ti .� Normalize probabilities pt pt=PNj=1 pj.� Evaluation� Given input x, output the weighted mean� H(x) = Pi ihi(x)=Pi iFigure 2.6. Zemel & Pitassi's algorithmjy�rj=D, square loss LS = jy�rj2=D2 and exponential loss Lexp = 1�exp[�jy�rj=D℄,where D = supt jyt � rtj. We used linear loss (absolute di�erene) as Druker.ADand square loss as Druker.S for the experiments.The evaluated ensemble output is the weighted median of model outputs, weightedby the ombination oeÆients i. The weighted median an be omputed by �rst sort-ing the outputs in order of magnitude, and then summing their weights until the sumexeeds half the weight total. If the weights were integers, this would be analogous todupliating the outputs by their weights and taking the regular median.

152.3.2.2. The Zemel-Pitassi Algorithm (using square loss). Zemel & Pitassi providean algorithm similar to Druker's, but with alternative mathematial partiulars. Thealgorithm is given in Figure 2.6. It is illustrative to examine the algorithm in ompar-ison to Druker's.Here the error funtion isJi = NXt=1 1pi exp hijyti � rtj2i (2.6)where the i is the ombination oeÆient.The loss funtion is �xed as squared error, and not saled to [0; 1℄ by D.The multiplier is 1pi here, replaing Druker's 1exp(i) . Nevertheless with 0 < i �1 they behave similarly (exept near the boundaries), so this alone should not ause asigni�ant di�erene in performane.Notably Zemel & Pitassi aknowledge that given this error funtion, i annot beanalytially determined, and the algorithm resorts to simple line searh to optimize it.Finally, to ombine base model outputs this algorithm uses weighted mean asopposed to Druker's weighted median.To ompare algorithms on equal terms, we implemented this algorithm as Zemel-Pitassi.S and Zemel-Pitassi.AD, using the original square loss and linear loss re-spetively. To get the best approximator of minimum absolute error, we replaedweighted mean by weighted median in Zemel-Pitassi.AD. See Setion 2.3.2.1 forweighted median omputation.

162.3.3. Relabeling AlgorithmsUnlike previous methods, in relabeling algorithms the base models are not trainedto predit the atual training set labels. The per-example training errors of the urrentombined model are alled residues, and eah model learns arti�ial labels formed usingthe residues. After training eah model i the residues are updated by subtrating thepredition yti of the new model weighted by its oeÆient i.Due to the subtration of model errors from the residues at eah step, the om-bination rule is additive, using a weighted sum. This inremental addition of modelsis motivated as gradient desent in funtion spae in [12℄.The priniple of AdaBoost, emphasizing diÆult (high-error) examples, an beapplied in two ways in relabeling algorithms. Example probabilities may be manipu-lated as before, or training labels may be transformed. Both methods are obtainablefrom the loss funtion being used.2.3.3.1. The LS Boost Algorithm. The Least-Squares regression boosting algorithmis an instantiation of Friedman's gradient-based boosting strategy [12℄ using square lossL = (y � r)2=2 where r is the atual training label and y is the urrent umulativeoutput yi = 0+Pij=1 jhj + ihi = yi�1+ ihi. The new training labels r̂ should be setto the diretion that minimizes the loss, whih is the negative gradient with respet toy evaluated at yi�1. So r̂ = [��L=�y℄y=yi�1 = r � yi�1 whih is the urrent residualerror. Substituting into the loss, we get the training errorE = NXt=1[ihti � r̂t℄ (2.7)where r̂t are the urrent residual labels. Setting �E=�i = 0 to �nd the ombinationoeÆients i yields the algorithm LS Boost, shown in Figure 2.7.Note that the bias term set in the initial step is redundant for base models that

17

� Training� Set 0 = 1N PNt=1 rt.� For t = 1; : : : ; N , initialize residues r̂t rt.� For eah base model hi where i = 1; : : : ; K� Train base model hi on fxt; r̂tgNt=1.� For t = 1; : : : ; N where hi(xt) 6= 0,� Evaluate outputs yti = hi(xt).� Set i = Pt r̂tyti=Pt(yti)2.� Update residues r̂t r̂t � iyti :� Evaluation� Given input x, output the weighted sum� H(x) = Pi ihi(x)Figure 2.7. The LS Boost algorithm

18already have or are able to simulate a bias term. It should only be neessary if theyare loal funtions expensive at approximating global bias.Du�y & Helmbold give an algorithm SquareLev.R (Square Leveraging for Re-gression) [11℄ whih only minimizes the variane of the residuals, normalizing them tozero mean at the very end of training. However this trivially amounts to using thesame square loss funtion leading to the same oeÆients, only adding the bias termat the end. The two algorithms are idential in e�et.SquareLev.C, a variant of SquareLev.R, is more interesting in that it takesthe alternative approah of modifying example probabilities to ahieve boosting. Theresidues are alulated as before, but the base learner is fed not the residues r̂, buttheir signs sign(r̂) 2 f�1;+1g. However now the distribution weight of eah exampleis made proportional to jr̂j, so eah example is still \emphasized" in proportion toits residual error. At the ost of resampling or handling probabilities in training,SquareLev.C allows using a binary lassi�er as the base model.2.3.3.2. The LAD Boost Algorithm. The Least-Absolute-Deviation regression boost-ing algorithm is derived from the same gradient-based framework as LS Boost, thistime with linear loss (absolute deviation). In the original it was further speialized toa ertain type of regression trees, but here we use the general form. The algorithm isshown in Figure 2.8.The gradient of LAD Boost's linear loss translates to the sign of the residue forbase model targets. This means that all base models are trained on f+1;�1g labels,whih also allows using lassi�ers for the base algorithm as a bonus.The oeÆient i should minimize the total absolute distane to the residuesi = argmin NXt=1 ���r̂t � yti ���

19

� Training� Set 0 = 1N PNt=1 rt.� For t = 1; : : : ; N , initialize residues r̂t rt � 0.� For eah base model hi where i = 1; : : : ; K� Train base model hi on fxt; sign(r̂t)gNt=1.� For t = 1; : : : ; N where hi(xt) 6= 0,� Evaluate outputs yti = hi(xt).� Calulate weighted inverse outputs zti = r̂t=yti .� Set i to the weighted median of zti by jyti j:i = inffzti : Pj:zji�zti jyji j � 12 Pj jyji jg� Update residues r̂t r̂t � iyti :� Evaluation� Given input x, output the weighted sum� H(x) = 0 +Pi ihi(x)Figure 2.8. The LAD Boost algorithm

20= argmin NXt=1 ���yti��� � ����� r̂tyti � �����= argmin NXt=1 ���yti��� � ���zti � ���= inffzti : Xj:zji�zti jyji j � 12Xj jyji jgwhih is the weighted median.One the optimal weight is found, the residues are updated to exlude the errororreted by the new model, and iteration may proeed with the next model.

213. SUPPORT VECTOR MACHINES
In this setion we desribe the family of mahine learning methods alled SupportVetor Mahines with a fous on regression problems. After illustrating the fundamen-tal idea in the linear ase, the kernel onept will be introdued for generalization tononlinear problems. 3.1. OverviewThe Support Vetor Mahine (SVM) is a mahine learning method that has at-trated onsiderable researh and industry attention sine its relatively reent devel-opment. Supported by both a sound bakground in statistial learning theory and anappliation-oriented researh fous, it has beome one of the most suessful methodswith respet to generalization performane.The algorithm is haraterized by (and named after) seleting and storing a subsetof the training examples as the important ones (alled the support vetors), suh thatknowing only these ritial training examples is enough to label any previously unseeninput. For example, in a linearly separable two-lass lassi�ation problem, a numberof examples that are losest to the assumed disrimination boundary are seleted as thesupport vetors. All other training examples are then unneessary, sine the supportvetors alone suÆiently onstrain the boundary from both sides. If training took plaeagain with all but the support vetor examples di�erent and suh that no new exampleame loser to the boundary, then the same support vetors would be hosen, andthe same boundary would be de�ned for evaluation, although muh of the training setwas di�erent. This invariane to hanges in \irrelevant" training data is the merit ofSupport Vetor Mahines, making them resistant to over�tting noisy data.Compared to non-parametri learners like k-Nearest Neighbors whih store alltraining examples for evaluation, the muh abused term \semi-parametri" is appliableto the SVM algorithm, though in a very di�erent way than, e.g., neural networks.

22The fundamental Support Vetor Mahine formulation is readily appliable totwo-lass and multi-lass lassi�ation, regression and density estimation. In aordwith the emphasis of our researh, we will introdue and examine the onepts in theontext of regression problems in partiular.3.2. The Linear ProblemGiven training data X = fxt; rtgNt=1 and a threshold parameter ", the most basiform of SVM seeks a linear solution that has at most " absolute deviation from thetraining label for eah example. The linear funtion an be expressed asf(x) = wTx + b (3.1)where w 2 <d and b 2 < are the parameters. vwTx denotes the inner produt of theinput and the weight vetor.If there are multiple funtions satisfying the error bound, the simplest should bepreferred, with Oam's Razor in mind. Simpliity in this setting is the atness of thefuntion, ontrolled by the magnitude of the vetor w.If suh a funtion exists, it an be found by solving the onvex optimizationproblem minimize 12kwk2subjet to 8><>: rt �wTxt � b � "wTxt + b� rt � " (3.2)
However this problem is not feasible if a perfet solution does not exist for thegiven training set and error bound. In that ase some errors beyond " must be al-lowed by the problem if a solution is to be found at all. This is ahieved by adding

23slak variables to relax the possibly infeasible onstraints. The optimization problembeomes minimize 12kwk2 + CPNt=1 (�t + ��t)
subjet to 8>>>>><>>>>>: rt �wTxt � b � "+ �twTxt + b� rt � "+ ��t�t; ��t � 0 (3.3)

This formulation e�etively employs an "-insensitive error funtion. Deviationsare ompletely tolerated up to ", and penalized linearly thereafter:E(y; r) = 8><>: 0 if jy � rj � "jy � rj � " otherwise (3.4)
The onstant C > 0 in the objetive funtion determines the balane betweenthe simpliity of the solution and the tolerane to errors above ". A lower value of Cwill emphasize minimizing the weights more than the slak variables, yielding a atterbut more error-prone funtion.3.3. A Solution StrategyThe optimization problem at hand an be solved more onveniently in its dualformulation: maximize 8>>>>><>>>>>: �12 PNt=1PNs=1 (�t � ��t)(�s � ��s)xtTxs�"PNt=1 (�t + ��t) +PNt=1 rt(�t � ��t)subjet to 8><>: PNt=1 (�t � ��t) = 0�t; ��t 2 [0; C℄ (3.5)

24The onstant C is now the upper bound for the new slak variables �t and ��t ,and is alled the apaity parameter.The dual formulation also yieldsw = NXt=1 (�t � ��t)xt (3.6)and hene f(x) = NXt=1 (�t � ��t)xTxt + b (3.7)
This expression shows that the parameter vetor w an be written as a linearombination of the training examples xt. This fat, that a weighted sum of the trainingexamples ompletely desribes the solution funtion, is the essene of Support VetorMahines. The above expression is therefore alled the Support Vetor expansion.By the Karush-Kuhn-Tuker (KKT) onditions [15, 16℄, the produt of the dualvariables and the onstraints should be zero at the optimal solution:�t("+ �t � rt +wTxt + b) = 0��t ("+ ��t + rt �wTxt � b) = 0 (3.8)and (�t � C)�t = 0(��t � C)��t = 0 (3.9)
It an be seen that �t��t = 0 so only one slak variable may be nonzero for a givenexample. Equation (3.9) implies that the examples outside the "-insensitive boundaryaround f are those with �(�)t = C. Furthermore, if xt is inside the boundary, then theseond fators in Equation (3.8) will be nonzero, making both �t and ��t zero. The

25latter illustrates a very important property of SVMs: the Support Vetor expansion issparse, i.e., only the examples with error " and above, alled the Support Vetors, areneessary to express the solution. The rest, whih are inside the boundary, may bedisarded sine their oeÆients will be zero. This sparsity property allows SVMs tostore only the neessary examples after training, reduing memory requirements andtime omplexity.From Equation (3.8) we also get an expression for omputing b given an examplext: b = 8><>: rt �wTxt � " for �t 2 (0; C)rt �wTxt + " for ��t 2 (0; C) (3.10)
The �nal b may be found by averaging over all examples having �t 2 (0; C) or��t 2 (0; C) 3.4. Nonlinear KernelsAlthough the SVM derivation desribed so far is exlusively tailored for the linearproblem, it an also be used for the nonlinear ase, for example through preproessing.By introduing new input dimensions as nonlinear transformations of the original input,the nonlinear problem an be projeted into a feature spae where it has a linearsolution. Then the linear SVM algorithm an be used as is. However it is not alwayspossible to �nd the neessary feature mapping to a linear spae, and as more nonlinearfeatures are added, this approah quikly beomes omputationally infeasible.Fortunately, looking at the SVM equations reveals that input vetors only appearin dot produts, so instead of expliitly �nding a nonlinear mapping �(xt) into afeature spae F , it is enough to �nd a kernel funtion k(xt;xs) that diretly omputes�(xt)T�(xs). It is thus possible to impliitly work in a higher dimensional featurespae without expliitly omputing the features.

26Using the kernel trik, the SVM algorithm in Equation (3.5) beomes
maximize 8>>>>><>>>>>: �12 PNt=1PNs=1 (�t � ��t)(�s � ��s)k(xt;xs)�"PNt=1 (�t + ��t) +PNt=1 rt(�t � ��t)subjet to 8><>: PNt=1 (�t � ��t) = 0�t; ��t 2 [0; C℄ (3.11)

The Support Vetor expansion in Equation (3.7) an now be written asf(x) = NXt=1 (�t � ��t)k(xt;x) + b (3.12)
The �nal general SVM regression algorithm is given in Figure 3.1.Note that while w = PNt=1 (�t � ��t)�(xt) is not expliitly omputed anymore,it still exists in the original formulation, and its magnitude is minimized as before.Hene the nonlinear SVM ensures \atness" in the feature spae, as opposed to theinput spae.The onditions for de�ning kernel funtions are given in [17℄. Many useful prop-erties and lasses of kernels are desribed in [18, 19℄.Some ommonly used SVM kernels arePolynomial: k(xt;xs) = (xtTxs + �)p where p 2 �; � � 0 (3.13)

27
� TrainingGiven the training set X = fxt; rtgNt=1, " > 0 and C > 0,� Compute �t; ��t by solving the optimization problem

maximize 8>>>>><>>>>>: �12 PNt=1PNs=1 (�t � ��t)(�s � ��s)k(xt;xs)�"PNt=1 (�t + ��t) +PNt=1 rt(�t � ��t)subjet to 8><>: PNt=1 (�t � ��t) = 0�t; ��t 2 [0; C℄� Compute b by averaging over the examples that have �(�)t 2 (0; C):
bt = 8>>>>><>>>>>: rt �PNs=1 (�s � ��s)k(xs;x)� " for �t 2 (0; C)rt �PNs=1 (�s � ��s)k(xs;x) + " for ��t 2 (0; C)� Store S = f(xt; rt; �t; ��t) : �t > 0 or ��t > 0g� Evaluation� Given input x, output y(x) = Pxt2S (�t � ��t)k(xt;x) + bFigure 3.1. The Support Vetor Regression algorithm

28Neural: k(xt;xs) = tanh(�xtTxs + �) where �; � � 0 (3.14)Radial: k(xt;xs) = exp(�kxt � xsk2) where > 0 (3.15)
3.5. Tuning InsensitivityThe partiular hoie of " diretly a�ets the seletion of support vetors, hang-ing their number and hene model omplexity. Too small values may result in overlyomplex models with poor generalization while too large values will ignore too manyexamples and yield very rude models. The optimal value depends on the noise in thedata at hand.Taking advantage of the dependeny between " and the number of support ve-tors, a method has been developed to automatially adjust " by ontrolling the numberof support vetors [20℄. With the addition of a new parameter �, " is made a mini-mized variable in the original optimization problem. Making the dual transformationas usual, the �-SVM algorithm is obtained:maximize 8><>: �12 PNt=1PNs=1 (�t � ��t)(�s � ��s)k(xt;xs)+PNt=1 rt(�t � ��t)

subjet to 8>>>>>>>>>>>><>>>>>>>>>>>>:
PNt=1 (�t � ��t) = 0PNt=1 (�t + ��t) � C�N�t; ��t 2 [0; C℄

(3.16)

29To adjust ", the new parameter � asymptotially spei�es the ratio of supportvetors in the training set. �N is an upper bound for the number of support vetorsoutside the "-boundary (�(�) = C) and a lower bound for the total number of supportvetors. See [20℄ for a proof. 3.6. RemarksAlthough the bulk of the SVM algorithm is left to a generi optimization algo-rithm one the problem is formulated, developing a dediated optimization algorithmfor solving SVMs provides many opportunities for improving eÆieny. There are var-ious SVM implementations available whih onsiderably redue omplexity by takingadvantage of the nature of the problem. For example the expliit omputation of b,omitted here for �-SVM, is in general not neessary, sine it is obtained as a by-produtof the optimization algorithm.As a �nal note, it should be mentioned that SVM models are hardly interpretable,sharing the blak-box nature of neural networks, in ontrast to e.g. deision trees. Forappliations where the learned model will be used to dedue human-understandablerules from data, Support Vetor Mahines provide little use.

304. REX
It is typial of human thinking to manage knowledge in rules, and exeptionsto the rules where neessary. In learning the past tense forms of English verbs forexample, the rule \append {ed" overs most ases, and we all suh verbs \regular".The irregular ones are simply memorized, sine any attempt to extend the rule to overirregular verbs would make the rule neither as simple nor as useful.Exeptions usually also allow generalization in their viinity. For example a per-son who knows that the past tense of "bend" is "bent", when faed with the verb"spend" for the �rst time, will onsider both the rule ("spended") and the lose exep-tion ("spent"), where indeed the exeption generalizes orretly. Of ourse for manyother similar verbs like "suspend" the rule holds, but we see nevertheless that exep-tions may be useful beyond prediting just the memorized example.The algorithm REx (Rules and Exeptions) uses this familiar paradigm to taklemahine learning problems. Most of the data is assumed to be produed by a relativelysimple rule, the other examples being exeptions to the rule. The idea was �rst pre-sented in [1℄, and extensively analyzed and applied for lassi�ation in [2, 3, 4, 5℄, withsigni�ant theoretial and empirial results. In this work, we extend the algorithmto regression problems, and ompare it to Bagging, AdaBoost variants and SupportVetor Mahines.In this setion we desribe REx for regression.4.1. PartitioningThe main assumption of REx is that there is a rule that explains most of the data.The algorithm is given another algorithm that learns the rule, and this rule algorithmdetermines whih training examples are the diÆult ones, using a threshold parameterand ross-validation.

31FindExeptions(training set X = f(xt; rt)gNt=1, rule algorithm F , threshold " > 0)� Randomly divide X into two equal-sized parts X1, X2� Run rule algorithm F on X1 to get rule model f1� Set S1 = f(x; r) 2 X2 : jf1(x)� rj > "g� Run rule algorithm F on X2 to get rule model f2� Set S2 = f(x; r) 2 X1 : jf2(x)� rj > "g� return S1 [S2 Figure 4.1. REx: Determining exeptionsThe simplest ase is two-fold ross-validation, where the training data is dividedinto two, the rule is trained on the �rst part, and tested on the seond part. The testexamples with error above the threshold value are marked as exeptions. Then therule is trained from srath on the seond part, and tested on the �rst part, markingthe neessary examples in the �rst part as exeptions. Combining the two sets ofexeptions ompletes the partitioning of the training set. We employed this two-foldase in our implementation. See Figure 4.1.4.2. CombiningOne the exeptions have been set apart, they should be put to good use in on-juntion with the rule. In lassi�ation, the on�dene of the rule lassi�er may ditatewhether the input will be heked with the exeptions or not, but simply storing theexeption is not enough for regression, sine there is no simple way to get a on�denevalue from a regressor. Training yet another regressor to learn the on�dene of the�rst is not guaranteed to be an easier problem than trying to learn all data diretly.One idea is to have a radius parameter suh that if an example is within thatradius of an exeption, it will be handled by the exeption and not the rule. A betterway is to make this exeption membership ontinuous, whih an be ahieved by plaingGaussians entered at eah of the exeptions.

32If there are J exeptions, there will be J Gaussians with parameters (�j;�j).To keep the number of parameters low, we an refrain from using general ovarianematries and Mahalanobis distane, and work with Eulidean distane assuming equalvarianes in all dimensions. Then parameters an be written as (�j; �j) where the �jare the inputs x of the exeptions. The j'th Gaussian output for test input xt is:ptj = exp "�kxt � �jk22�2j # (4.1)
�j an be set to the quarter of the distane to the nearest other exeption, sothat their Gaussians will marginally overlap if the varianes are the same.4.3. Collaborative RExWhen there is a Gaussian for eah exeption, the ombined output an be a linearombination of the rule output and all exeption outputs. If we regard the wholeombined model as a single model with parameters inluding the linear weights, allGaussian parameters and the rule parameters, provided that the rule is a di�erentiablefuntion, we an train the whole model as one. This allows not only learning the linearweights and the rule, but also �netuning the exeption enters and varianes to suit therule better. This algorithm is alled Collaborative REx, (denoted as C-REx for short),sine the rule and the exeptions work together to form the ombined output.4.3.1. Linear RuleIn the ase of a linear rule, sine linear transformations of a linear funtion arestill linear, the two stages of linearity an be ombined into one, onneting input unitsto the output diretly. See Figure 4.2 for a network diagram.

33

1 x1 xD

wkd

µµµµ j , σ j

vj

Figure 4.2. Network diagram of C-REx using linear ruleThe ombined output for input xt is thenyt = DXd=0wdxtd + JXj=1 vjptj (4.2)where xt inludes a bias term x0 = 1.Gradient desent using a sum-of-squares error yields the training equations:�wd = �(rt � yt)xtd (4.3)
�vj = �(rt � yt)ptj (4.4)

��jd = �(rt � yt)vjptj xtd � �jd�2j ! (4.5)

34

1 x1 xD

1

wkd µµµµ j , σ j

Tk vj

Figure 4.3. Network diagram of C-REx using MLP rule��2j = �(rt � yt)vjptj kxt � �jk2�4j (4.6)where � is a learning rate onstant and may atually be di�erent for eah equation.4.3.2. MLP RuleUsing a multi-layer pereptron for the rule, the seond layer is again linear, so theoutput unit may be shared by the Gaussians as before. The diagram is in Figure 4.3.The hidden unit outputs are the sigmoid of their net input:sigmoid(�) = 11 + e�� (4.7)
htk = sigmoid DXd=0wkdxtd! (4.8)

35The ombined output is: yt = KXk=0Tkhtk + JXj=1 vjptj (4.9)
And the gradient desent update equations are:�Tk = �(rt � yt)htk (4.10)

�wkd = �(rt � yt)Tkhtk(1� htk)xtd (4.11)and Equations (4.4), (4.5), (4.6) as before.4.4. Mixture RExInstead of taking the linear ombination of the Gaussians and the rule, an al-ternative is to view the model like a Mixture of Experts arhiteture [21℄, where theexeptions and the rule ompete for the output, the one with the maximum gatingvalue being seleted. We all this version Mixture REx, abbreviated as M-REx. Thegating values of the exeptions are based on their Gaussian outputs, and if seletedthey will return a linear parameter. The rule will have its own Gaussian gating unit p0with (�0; �20). For di�erentiability, the softmax funtion will be used, whih is simplythe gating values normalized by their sum:gtj = ptjPKk=0 ptk (4.12)And the ombined network output is:yt = gt0F (xt) + JXj=1 gtjvj (4.13)

36where F (xt) is the rule output.After tedious di�erentiation, gradient desent yields:�vj = �(rt � yt)gtj (4.14)
��jd = �(rt � yt)(vj � yt)gtj xtd � �jd�2j ! (4.15)
��2j = �(rt � yt)(vj � yt)gtj kxt � �jk2�4j (4.16)where v0 � F (xt) to update the rule mean and variane.The update equations for rule parameters are, for the linear rule (Figure 4.4):�wd = �gtj(rt � yt)xtd (4.17)and for the MLP rule (Figure 4.5):�Tk = �gtj(rt � yt)htk (4.18)
�wkd = �gtj(rt � yt)Tkhtk(1� htk)xtd (4.19)

4.5. ClusteringAn overly simple rule model or an inherently disontinuous data may produemany exeptions onentrated in the same input region, most of whih are redundant.Even though unneessary exeptions may be hoped to automatially \disappear" dur-

37

1 x1 xD

wd

µµµµ j , σ j
µµµµ 0,σ 0

vj

softmax

Figure 4.4. Network diagram of M-REx using linear rule

1 x1 xD

1

wkd µµµµ j , σ j

Tk

µµµµ 0 , σ 0

vj

softmax

Figure 4.5. Network diagram of M-REx using MLP rule

38FindExeptionClusters(exeption set S = f(xs; rs)gs, luster ount K)� If jSj � K, return S� Initialize luster set T = f(xt�; rt�)gt to a random subset of S� Repeat until onvergene� Assoiate every exeption (xs; rs) in S with the losest luster (xt�; rt�)so that the distane kxt� � xsk is minimum� Move every luster (xt�; rt�) to the mean of its exeptions (xs; rs)� return T Figure 4.6. REx: Finding exeption lustersing �netuning by their linear ombination weights going to zero or varianes expanding,hanes are high that they will ause the model to over�t. In the very least, they greatlyinrease the spae and time omplexity of the algorithm.To redue the number of exeptions without throwing away valuable information,we apply K-means lustering to �nd representative exeptions. This algorithm itera-tively loates a number of luster enters on the exeption data so that every exeptionhas the minimum squared deviation from the nearest luster enter. One the lus-ters are found, the previous exeption set is disarded and replaed by the means ofthe lusters. As a result, lose exeptions are represented by the same luster mean,removing redundany. See Figure 4.6.The major downside of K-means lustering is that the number of lusters is pre-spei�ed. If a fewer quantity than the atual number of exeption groups is given,some groups will be degenerately represented, leading to information loss. If too manylusters are sought, the perils of over�tting and omplexity will persist, to the degreeof luster overhead. Although inremental variants have been proposed that automati-ally determine the number of lusters, they introdue other parameters to be manuallyadjusted. For REx we applied K-means as is, using K as a fration of the training setsize.

395. SIMULATION RESULTS
We implemented the algorithms desribed so far, and observed their behavioron several syntheti and real-�le datasets. This setion details the experimentationproess and the results. 5.1. Datasets and MethodologyWe used the datasets in Table 5.1 for our experiments. All of them have one-dimensional ontinuous output labels for regression. All input and output attributes,exept those of syndata, were z-normalized to zero mean and unit variane to alleviatethe e�ets of using Eulidean distane instead of Mahalanobis distane in the ase ofmultivariate input.syndata is a dataset that we generated synthetially for observing the behaviorsof algorithms visually. It has 1000 examples of unidimensional input, and on an outputrange of [�15;+15℄ it has Gaussian noise of zero mean and unit variane. See Figure 5.1for a plot of all examples.boston is the well-known Boston house prie dataset from the UCI MahineLearning Repository [22℄. It has 506 examples with 12 inputs, trying to predit realestate pries from various attributes.alif1000 is a 1000-example subset of the California house prie dataset from[22℄, similar to boston in objetive. It has eight input attributes.abalone is a dataset for prediting the age of abalone from physial measure-ments, again from [22℄. It has 4177 examples and 10 input attributes.prostate is a prostate aner dataset from [23℄. It aims to estimate the Gleasonindex of patients, an indiator of aner pervasion. There are 376 examples with seven

40Table 5.1. Properties of the datasets usedinputs sizesyndata 1 1,000boston 12 506alif1000 8 1,000abalone 10 4,177prostate 7 376birth 5 488votes 6 3,107kin8fm 8 8,192kin8fh 8 8,192kin8nm 8 8,192kin8nh 8 8,192

−5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15

Figure 5.1. Dataset syndata (1000 examples)

41inputs.birth is another medial dataset from [23℄, prediting the birth weight of a hildbased on �ve attributes of the mother. It ontains 488 examples.votes from the StatLib web site of Carnegie Mellon University, also known asspae ga, is a spatial data targeted for geographial analyses. It ontains 3107 obser-vations on U.S. ounty votes ast in the 1980 presidential eletion, used for preditingthe number of valid votes from eah ounty based on six attributes.kin8 is a set of four related datasets from StatLib. Based on simulated forwardkinematis of the eight-link Puma robot arm, eah dataset has 8192 examples witheight inputs. The datasets di�er in nonlinearity and noise level. kin8fm is fairly linearwith medium noise, while kin8fh is fairly linear with high noise. kin8nm is highlynonlinear with medium noise, and kin8nh is highly nonlinear with high noise.For all datasets, we repeated eah experiment ten times, using 5 � 2 ross-validation. That is, we reated �ve di�erent random partitions of the data into twoequal halves, and we trained the algorithm from srath on eah of the ten halves, usingthe orresponding other half for testing. All reported errors are the averages of tensuh independent test runs on unontaminated test sets. Standard deviations of theten test errors are also inluded where possible. The error bars in the �gures indiateone standard deviation above and below the mean error of the ten runs.Some algorithms with parameters to be manually tuned were evaluated withall possible ombinations over sets of parameter values. Others had to be manually\tweaked" by trial and error sine omplexity and sensitivity onstraints prohibitedsuh exhaustive ombinations.

425.2. Base Algorithm ResultsFirst we shall evaluate the algorithms that were used to serve as base algorithmsto the others that we will examine. For the Bagging and AdaBoost variants we usedthe J-leaf regression tree as base, and for REx we used linear models and multi-layer pereptrons. The performane of these algorithms without any aggregation orenhanement are investigated below on the datasets. This is both useful to onstitutea benhmark for the enhaned versions, and also to shed light on the struture andintrinsi omplexity of eah dataset.We tested the Bagging and AdaBoost algorithms using J-leaf regression trees asbase models. Our regression tree indution algorithm, given in Figure 5.2, uses onstantleaf labels and subdivides the leaf node with the greatest total squared deviation fromthe mean, until a spei�ed leaf ount J is reahed or all leaves have a single trainingelement. The leaf ount parameter J is used to ontrol model omplexity. Note thatregression tree algorithms sensitive to output saling, suh as thresholded or variane-bounded models, are not as suitable for our experiments, sine they would requireseparate parameter adjustment between residual algorithm steps.Linear models were trained analytially by using the pseudo-inverse of the ovari-ane matrix, so do not have any parameters.Multi-layer pereptrons were trained using gradient desent, using a learning rateparameter � manually adjusted to the data, and a momentum parameter � = 0:5 toaelerate learning and possibly esape loal minima.For the multi-layer pereptrons we used hidden unit ounts of 2, 5, 10, 15, 20,25 and 30. The same values extended up to 50 were used for the regression trees,but values above 30 are not shown in the graphs. The linear models are plotted aszero-hidden-unit pereptrons.Figures 5.3, 5.4 and 5.5 show the base algorithm errors on syndata, votes and

43
� Training� funtion ConstrutTree(training set X , leaf ount J)(returns the root node of a regression tree with at most J nodes)� Create tree node RootNode amd let partition P = f(X ; RootNode)g� While jP j < J and at least one (S;Node) 2 P has jSj > 1, repeat� Choose (S;Node) 2 P with jSj > 1 that has the largest error E(S)where E(S = fxt; ytgNt=1) =PNt=1[yt �PNi=1 yi℄2� For eah input dimension j = 1; : : : ; d� Sort examples in S in asending order of attribute xj� For k = 2; : : : ; jSj� Compute split error ekj = E(fxt; ytgk�1t=1) +E(fxt; ytgjSjt=k)� Selet best split (j0; k0) = argminj;kfekj g� Sort examples in S in asending order of attribute xj0 .� Compute attribute threshold r = (xk0�1j0 + xk0j0)=2� Divide S into hild subsets SL = f(x; y) 2 S : xj0 � rg and SR = S n SL� Create tree nodes NodeL; NodeR� Finalize Node as NonleafNode(j0; r;NodeL; NodeR)� Update partition P (P n S) [f(SL; NodeL); (SR; NodeR)g� For eah (S;Node) 2 P� Compute y = meanfy : (x; y) 2 Sg and �nalize Node as LeafNode(y)� return RootNode� Evaluation� Given input x, all EvaluateTree(RootNode;x)� funtion EvaluateTree(Node;x)� If Node is a LeafNode(y) then return y� Otherwise, Node is a NonleafNode(j; r; ChildL; ChildR)� If attribute xj � r then return EvaluateTree(ChildL;x)� Otherwise return EvaluateTree(ChildR;x)Figure 5.2. The J-leaf Regression Tree algorithm

44

−5 0 5 10 15 20 25 30 35
0.5

1

1.5

2

2.5

3

3.5

4

4.5

hidden units or leaves

te
st

 e
rr

or

Linear & MLP
RegTree

Figure 5.3. Base algorithm errors for syndata

−5 0 5 10 15 20 25 30 35
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

hidden units or leaves

te
st

 e
rr

or

Linear & MLP
RegTree

Figure 5.4. Base algorithm errors for votes

45

−5 0 5 10 15 20 25 30 35
0.6

0.8

1

1.2

1.4

1.6

1.8

2

hidden units or leaves

te
st

 e
rr

or

Linear & MLP
RegTree

Figure 5.5. Base algorithm errors for birthbirth respetively, varying with hidden units or tree leaves. The full set of basealgorithm error graphs for eah dataset an be found in Appendix A.1.Sine syndata has single-dimensional input, it does not su�er from the urseof dimensionality as the others do. The regression tree is able to beome suÆientlyomplex to rival MLP in its allowed range of leaves. For the MLP, 5 hidden unitsindiate saturation, and for larger numbers beginnings of over�tting are observable.For votes, the behaviors are similar, only with MLP generalizing with signi�-antly less error than the regression tree.On the small birth dataset the regression tree learly and inevitably over�ts. Asthe number of leaves inrease, it onverges to a memorization of the training data andyields poor generalization on the test set. MLP su�ers muh less, possibly due to itsontinuous nature, while regression tree output is pieewise onstant.

46

−5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15
15−leaf Regression Tree

Figure 5.6. 15-leaf regression tree output on syndataExample output plots on syndata are in Figures 5.6 and 5.7. The full set is inAppendix A.2. 5.3. Bagging and AdaBoost ResultsUsing J-leaf regression tree base models as desribed above, one parameter ofeah algorithm was inevitably the leaf ount J of the tree. The same values as the basemodels above were used for J .The other free parameter was the number of base learners. Values of f2; 5; 10; 15; 20gwere used.Best-Ratio Bagging internally used 50 per ent of the original training exam-ples for validation, and ompared the ratios 10, 20, . . . , 90 per ent of the remainingexamples for sample size.

47

−5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15
MLP−5

Figure 5.7. 5-hidden-unit MLP output on syndataAdaBoost.R was tested only on syndata, boston and alif1000, where ityielded properly dereasing test errors like the Bagging methods. It showed no danger-ous sensitivity to tree size, albeit demonstrating no signi�ant advantage over Baggingto aount for its omplexity either.Figures 5.8 and 5.9 show the test errors ofBagging, LS Boost andDruker.ADon syndata as the number of base models hanges. These algorithms were hosen be-ause they are prime examples of their respetive ategories. The unaggregated basealgorithm RegTree is also inluded, plotted as onstant. These �gures show someharateristi behaviors, also observed on most of the other datasets. The plots for alldatasets are in Appendix A.4.Druker's and Zemel & Pitassi's algorithms did not perform well with very smalltrees, inreasing test error as more base models were added. Cheking the trainingerrors also revealed similarly inreasing error, indiating that this is not due to over-�tting by adding too many models, but the base models were too oarse to be useful

48

0 5 10 15 20 25
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
RegTree
Bagging
Drucker.AD
LS_Boost

Figure 5.8. Bagging and AdaBoost errors on syndata using 5-leaf trees

0 5 10 15 20 25
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2
RegTree
Bagging
Drucker.AD
LS_Boost

Figure 5.9. Bagging and AdaBoost errors on syndata using 15-leaf trees

49to the distribution-based algorithms.The relabeling algorithms LAD Boost and LS Boost gave the best resultswith small trees. They started over�tting at muh smaller leaf ounts than the unag-gregated base algorithm, probably beause their modi�ation of target labels reduesthe omplexity of data. This is espeially true of LAD Boost whih greatly simpli�esthe problem for the base learners by disretizing pseudo-targets to binary.Bagging methods did not have problems with tree size. They used the trees athand with onsistent suess through base model additions, although they needed alarge number of large base models to ath up with the performane of the relabelingAdaBoost algorithms on small trees.Our onjeture for the behavior of the CVA algorithm was validated by theexperiment results. CVA was slightly better than the other Bagging algorithms usingvery few base models, and fell behind quikly thereafter as the ross-validated trainingset versions beame inreasingly similar. Bootstrapping proved to be the seletionmethod of hoie for aggregation.The W-Bagging modi�ation was not useful at all, almost always worse thanBagging. This is not surprising, sine the bootstrap samples are seleted uniformrandomly, so any di�erenes over validation examples must be purely aidental. Any\on�dene" values thus derived are bound to disrupt the Bagging proess.Compared to a �xed 50 per ent ratio of sample size with Bagging, BR-Bagging did not show signi�ant improvement despite the nine-fold exeution time.Still it remains to be the only promising modi�ation to Bagging among those weimplemented, having a slight advantage to Bagging at times.Figures 5.10, 5.11 and 5.12 show example outputs on syndata using 15-leaf re-gression trees as base models.

50

−5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15
Bagging, 10 trees with 15 leaves

Figure 5.10. Bagging output on syndata using 15-leaf trees

−5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15
Drucker.AD, 10 trees with 15 leaves

Figure 5.11. Druker.AD output on syndata using 15-leaf trees

51

−5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15
LS_Boost, 10 trees with 15 leaves

Figure 5.12. LS Boost output on syndata using 15-leaf trees5.4. Support Vetor Mahine ResultsFor the SVM implementation we used the LIBSVM pakage [24℄.For ease of use and ompatibility of parameters with the other algorithms, weused the �-SVM variant for our experiments. Our kernel of hoie was the radialkernel (Equation 3.15) beause of its ongruene to the Gaussian exeptions of REx.The parameter � whih roughly presribes the ratio of support vetors, the apaityC, and the kernel spread parameter were manually set to suitable values for eahdataset by trial and error.Figures 5.13, 5.14 and 5.15 show Support Vetor Mahine outputs on syndatafor di�erent parameters. Support vetors are also marked on the graphs.The performane of the Support Vetor Mahine algorithm was found to relyheavily on orretly hoosing the hyperparameters C, �, and the kernel parameter

52

−5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15
SVM with C=1000, ν=0.02, γ=5 −− 32 SVs found

Figure 5.13. SVM output on syndata with � = 0:02 and = 5

−5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15
SVM with C=1000, ν=0.05, γ=5 −− 51 SVs found

Figure 5.14. SVM output on syndata with � = 0:05 and = 5

53

−5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15
SVM with C=1000, ν=0.05, γ=10 −− 61 SVs found

Figure 5.15. SVM output on syndata with � = 0:05 and = 10. � roughly ontrols the number of support vetors, so too small values yield toooarse grained regressors, and too high values result in too omplex models that over�t.Similarly, large parameters make kernel radii too narrow, e�eting many supportvetors to over the examples. And while searhing for the right brew of � and , Cmust be kept large enough to allow the desired learning.Sine we used no prior information about the data distribution and noise at hand,the parameters had to be tuned manually by tedious trial and error. Fortunately, whenwe ultimately did sueed in hoosing suitable values, the SVM algorithm proved to atleast as good as MLP on most datasets.5.5. REx ResultsRunning REx without lustering produed too many exeptions, as expeted.Sine the initial varianes were aordingly low, these Gaussians stayed as spikes fromthe rule, in e�et memorizing the exeptions without onsequene. See the example

54

−5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15
plotcrex 6,2,1,1,0.001

Figure 5.16. C-REx output on syndata with 2-hidden-unit MLP rule and " = 6without lusteringC-REx output on syndata in Figure 5.16 for an illustration, where the thin line is the2-hidden-unit MLP rule. The rule is simpler than needed, but although a very largeerror threshold (" = 6) was used, the exeptions do not serve to shape it in the rightmanner. The resulting funtion is far from being useful at all, despite a very highomplexity.Using lustering with ten means, Figures 5.17 and 5.18 are respetively the CRExand MREx outputs on syndata with a linear rule, and Figures 5.19 and 5.20 show thealgorithms using 2-hidden-unit MLP rules. The thinner lines are the outputs of therule, and the Gaussian urves indiate exeption lusters in the input spae. Comparedto the previous outputs without lustering, the improvement is obvious.Appendix A.3 inludes a set of plots illustrating the e�et of thresholds with andwithout lustering, for both C-REx and M-REx. The positive results of the smoothinge�et seen in Figure 5.19 are veri�able from these graphs for most datasets.

55In general, the average of lustered C-REx was at least as good as its rule aloneon all datasets, exept syndata where adding exeptions to an MLP was not as fruitful.With smaller MLPs than the optimal base model �t, the merit of C-REx was moreapparent sine the poorly �tting rule was twisted into shape by the exeptions. Onthe low-noise datasets kin8fm and kin8nm C-REx was able to satisfatorily improveits rule beyond the rule's best performane alone.M-REx failed to provide a onsistent improvement of its base rule on the averageof 10 runs in any dataset.Compared to C-REX, M-REx turned out to be solving a more diÆult problem.Beause of the steep softmax, its output is less smooth, one of the exeptions or therule being loally dominant. Contrast the outputs on a linear rule in Figures 5.19and 5.20 to observe the di�erene. C-REx produes a smooth strething of the rule,while M-REx orrets it in lear-ut piees. This sharper nature also auses the errorsurfae of M-REx to be rougher, produing many deep loal minima that the algo-rithm easily gets stuk in. The resulting test error variane is naturally higher thanthat of C-REx, indiating a less reliable algorithm. Also, the additional exponentialomputations beause of softmax make the algorithm numerially apriious, proneto overows and underows. However, despite the diÆulties in operation and poorexperimental results, a future study of deriving knowledge from REx models is likelyto �nd M-REx rather advantageous, sine a partitioning into exeption or rule regionsis more understandable than a ontinuous mathematial ombination.Both C-REx and M-REx su�er to a degree from �netuning problems where Gaus-sian enters go outside the input region, varianes spread to in�nity or shrink to zero,and while trying to ompensate for a tiny variane some ombination weights soarand ause arbitrarily high spikes. Indiative of the algorithm's endeavor to dispose ofredundant or poorly initialized exeption enters, these problems are also ommon inRadial Basis Funtion networks, and known solutions are diretly appliable to RExsuh as simple bounding or regularization methods suh as weight deay. Eduatedinitialization of the varianes also helps onsiderably.

56

−5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15
CREx−Lin threshold=1.8, k=10

Figure 5.17. C-REx output on syndata with linear rule and " = 1:8 with 10 lusters

−5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15
MREx−Lin threshold=1.4, k=10

Figure 5.18. M-REx output on syndata with linear rule and " = 1:4 with 10 lusters

57

−5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15
CREx−MLP−2 threshold=1.4, k=10

Figure 5.19. C-REx output on syndata with 2-hidden-unit MLP rule and " = 1:4with 10 lusters5.6. Overall ComparisonSine our Bagging and AdaBoost algorithms use regression trees while REx usespereptrons, omparisons based on overall auray results are not fair. However bag-ging or boosting MLPs would not illustrate the gradual enhanement of the simple basemodel as well as regression trees, and using linear models would be pointless sine theombination would still be linear. Similarly, using regression trees for REx rules wouldnot have emphasized the \global rule vs. loal exeption" paradigm as pereptronshave allowed. The objetive of our experiments was not produing numerial benh-marks to prove �nal superiority of one algorithm to another, but to gain an insight tothe partiulars of eah algorithm, leading to an understanding of when to utilize whihone of them. Having said this, we present the best average errors per example for eahalgorithm on the datasets in Tables 5.2{5.23. The oasional lines dividing the tablesshow the range boundaries of Dunan's range test with 95 per ent on�dene.

58

−5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15
MREx−MLP−2 threshold=1.4, k=10

Figure 5.20. M-REx output on syndata with 2-hidden-unit MLP rule and " = 1:4with 10 lustersTables 5.24{5.45 show the algorithms ompared using the 5�2-fold ross-validatedF test [25℄ with 95 per ent on�dene.What is not seen in the tables is the improvement that the Bagging, AdaBoostand REx algorithms provide on relatively simple base models. If we have at our dis-posal simpler models than neessary to properly learn all data by themselves, thesealgorithms allow us signi�ant improvements in auray. Although we may be ableto train pereptrons or trees of arbitrary size, both are suseptible to over�tting withnoisy data. Instead of trying to tune omplexity with fear of over�tting, using safelysmall base models with one of these master algorithms may be less risky. Even in theextreme ase where the base models are inevitably over�tting, they may be bagged toredue variane and inrease generalization performane.On the whole, Bagging was observed to be a robust algorithm with respet tobase model omplexity, improving overly simple or overly omplex base models equally

59well. AdaBoost variants were superior as long as the base models were well suited,requiring very simple ones for the relabeling variants and more omplex ones for thedistribution-based family. Otherwise AdaBoost performane degraded beyond use.The ratio parameter of Bagging was found to have negligible e�et, 50 per entbeing aeptable in all ases. Other than this and the base model omplexity, Baggingand the AdaBoost algorithms had only the number of base models as the parameter,whih is relatively intuitive and inrementally observable.Support Vetor Mahines proved very apable, their atness onstraint providinginherent regularization against over�tting. However, ompared to the other algorithms,they are rather diÆult to use e�etively, being a blak box with many parameters tobalane.Of the two types of REx desribed, C-REx ahieved satisfying results, espeiallywith simple rules. Clustering proved to be indispensible, the exeptions being una-eptably many otherwise. M-REx produed inferior results than its rule alone on alldatasets, demonstrating a need for amending its desribed problems.

60
Table 5.2. Errors of Bagging and AdaBoost on syndataavg stdevW-Bagging leaves= 30 trees= 20 0.8870 0.0347BR-Bagging leaves= 30 trees= 15 0.8885 0.0339Bagging leaves= 25 trees= 20 0.8905 0.0434Z&P.S leaves= 30 trees= 5 0.9001 0.0452CVA leaves= 35 trees= 5 0.9033 0.0443Z&P.AD leaves= 20 trees= 5 0.9096 0.0394Druker.AD leaves= 25 trees= 10 0.9167 0.0552AdaBoost.R leaves= 50 trees= 20 0.9187 0.0843Druker.S leaves= 20 trees= 10 0.9211 0.0609LS Boost leaves= 10 trees= 5 0.9337 0.0583RegTree leaves= 45 0.9426 0.0495LAD Boost leaves= 5 trees= 20 0.9781 0.0504

Table 5.3. Errors of SVM and REx on syndataavg stdevSVM � = 0:42 C = 13 0.9556 0.0273MLP hidden= 5 1.0724 0.0742CREx-MLP hidden= 15 " = 1:20 1.2623 0.1116MREx-MLP hidden= 10 " = 1:20 1.5678 0.3230MREx-Lin " = 0:80 2.5088 0.3000CREx-Lin " = 1:00 2.6837 0.1142Linear 3.0964 0.0717

61
Table 5.4. Errors of Bagging and AdaBoost on bostonavg stdevDruker.AD leaves= 20 trees= 20 0.2760 0.0193Z&P.AD leaves= 20 trees= 20 0.2803 0.0184Z&P.S leaves= 20 trees= 15 0.2864 0.0225BR-Bagging leaves= 20 trees= 15 0.2938 0.0262Bagging leaves= 20 trees= 20 0.2953 0.0156W-Bagging leaves= 20 trees= 20 0.2956 0.0191Druker.S leaves= 20 trees= 10 0.2972 0.0136AdaBoost.R leaves= 45 trees= 20 0.3068 0.0278CVA leaves= 20 trees= 5 0.3075 0.0278LS Boost leaves= 15 trees= 5 0.3346 0.0287LAD Boost leaves= 2 trees= 20 0.3461 0.0252RegTree leaves= 20 0.3500 0.0229

Table 5.5. Errors of SVM and REx on bostonavg stdevSVM � = 0:50 C = 100 0.2549 0.0138CREx-MLP hidden= 5 " = 0:30 0.2938 0.0248MLP hidden= 2 0.3053 0.0254CREx-Lin " = 0:40 0.3634 0.0260Linear 0.3774 0.0186MREx-MLP hidden= 10 " = 0:10 0.7700 0.0629MREx-Lin " = 0:10 0.8053 0.1300

62
Table 5.6. Errors of Bagging and AdaBoost on alif1000avg stdevZ&P.AD leaves= 35 trees= 20 0.4250 0.0198Druker.AD leaves= 35 trees= 20 0.4292 0.0150W-Bagging leaves= 30 trees= 20 0.4364 0.0194BR-Bagging leaves= 35 trees= 20 0.4436 0.0173Bagging leaves= 35 trees= 20 0.4452 0.0162Z&P.S leaves= 35 trees= 20 0.4469 0.0195CVA leaves= 35 trees= 10 0.4520 0.0181LAD Boost leaves= 5 trees= 20 0.4551 0.0212Druker.S leaves= 35 trees= 10 0.4573 0.0160AdaBoost.R leaves= 35 trees= 15 0.4644 0.0220LS Boost leaves= 5 trees= 15 0.4683 0.0162RegTree leaves= 35 0.5060 0.0284

Table 5.7. Errors of SVM and REx on alif1000avg stdevCREx-MLP hidden= 5 " = 1:00 0.3891 0.0126SVM � = 0:30 C = 100 0.3989 0.0126MLP hidden= 2 0.4037 0.0249CREx-Lin " = 1:20 0.4327 0.0095Linear 0.4355 0.0095MREx-MLP hidden= 5 " = 1:20 0.7535 0.0671MREx-Lin " = 1:00 0.8833 0.1727

63
Table 5.8. Errors of Bagging and AdaBoost on votesavg stdevDruker.AD leaves= 50 trees= 20 0.4433 0.0063Bagging leaves= 50 trees= 20 0.4442 0.0055BR-Bagging leaves= 50 trees= 20 0.4447 0.0055W-Bagging leaves= 50 trees= 20 0.4464 0.0040Z&P.AD leaves= 50 trees= 20 0.4474 0.0041Z&P.S leaves= 50 trees= 20 0.4486 0.0060Druker.S leaves= 50 trees= 15 0.4553 0.0051CVA leaves= 50 trees= 5 0.4577 0.0074LAD Boost leaves= 10 trees= 20 0.4718 0.0121LS Boost leaves= 5 trees= 20 0.4812 0.0139RegTree leaves= 50 0.4930 0.0127

Table 5.9. Errors of SVM and REx on votesavg stdevSVM � = 0:40 C = 30 0.3939 0.0052CREx-MLP hidden= 20 " = 1:40 0.4032 0.0078MLP hidden= 10 0.4059 0.0127CREx-Lin " = 1:40 0.4754 0.0075Linear 0.4891 0.0057MREx-MLP hidden= 20 " = 1:20 0.8327 0.0532MREx-Lin " = 1:20 0.8359 0.0520

64
Table 5.10. Errors of Bagging and AdaBoost on prostateavg stdevLAD Boost leaves= 2 trees= 2 0.5996 0.0226W-Bagging leaves= 35 trees= 20 0.6051 0.0442CVA leaves= 2 trees= 10 0.6270 0.0532Z&P.S leaves= 2 trees= 2 0.6307 0.0492Bagging leaves= 2 trees= 20 0.6350 0.0420BR-Bagging leaves= 5 trees= 20 0.6415 0.0345Z&P.AD leaves= 2 trees= 5 0.6495 0.0749Druker.AD leaves= 2 trees= 2 0.6503 0.0506RegTree leaves= 2 0.6684 0.0723Druker.S leaves= 15 trees= 20 0.6776 0.0387LS Boost leaves= 5 trees= 5 0.6783 0.0531

Table 5.11. Errors of SVM and REx on prostateavg stdevSVM � = 0:30 C = 3 0.5930 0.0355CREx-MLP hidden= 30 " = 1:20 0.6111 0.0341CREx-Lin " = 1:80 0.6117 0.0342Linear 0.6119 0.0331MLP hidden= 2 0.6357 0.0364MREx-Lin " = 1:80 0.7507 0.0526MREx-MLP hidden= 20 " = 1:20 0.7600 0.0257

65
Table 5.12. Errors of Bagging and AdaBoost on birthavg stdevBR-Bagging leaves= 5 trees= 15 0.7766 0.0290Bagging leaves= 2 trees= 15 0.7802 0.0328W-Bagging leaves= 5 trees= 20 0.7809 0.0306LS Boost leaves= 10 trees= 5 0.7825 0.0281CVA leaves= 2 trees= 10 0.7848 0.0303Z&P.S leaves= 2 trees= 5 0.7897 0.0261Z&P.AD leaves= 2 trees= 5 0.7905 0.0257Druker.AD leaves= 2 trees= 5 0.7911 0.0265Druker.S leaves= 2 trees= 2 0.7917 0.0338LAD Boost leaves= 10 trees= 10 0.7926 0.0279RegTree leaves= 2 0.8122 0.0554

Table 5.13. Errors of SVM and REx on birthavg stdevMLP hidden= 2 0.7696 0.0335CREx-MLP hidden= 2 " = 1:60 0.7706 0.0300Linear 0.7738 0.0311CREx-Lin " = 1:80 0.7767 0.0296SVM � = 0:30 C = 10 0.7840 0.0314MREx-Lin " = 1:80 0.9220 0.1176MREx-MLP hidden= 2 " = 1:80 0.9486 0.0955

66
Table 5.14. Errors of Bagging and AdaBoost on abaloneavg stdevW-Bagging leaves= 35 trees= 20 0.4832 0.0077Z&P.AD leaves= 50 trees= 10 0.4965 0.0115LAD Boost leaves= 10 trees= 20 0.4970 0.0051BR-Bagging leaves= 20 trees= 20 0.5128 0.0112Druker.AD leaves= 50 trees= 10 0.5143 0.0153LS Boost leaves= 20 trees= 15 0.5201 0.0085Bagging leaves= 15 trees= 20 0.5209 0.0176CVA leaves= 15 trees= 5 0.5226 0.0150Druker.S leaves= 25 trees= 2 0.5440 0.0293Z&P.S leaves= 10 trees= 2 0.5443 0.0387RegTree leaves= 10 0.5451 0.0049

Table 5.15. Errors of SVM and REx on abaloneavg stdevCREx-MLP hidden= 10 " = 3:00 0.4555 0.0070SVM � = 0:40 C = 4 0.4594 0.0074MLP hidden= 2 0.4727 0.0089CREx-Lin " = 2:50 0.5710 0.0556MREx-Lin " = 3:50 1.0730 0.5807Linear 1.3079 1.1231MREx-MLP hidden= 10 " = 3:00 1.6330 1.2309

67
Table 5.16. Errors of Bagging and AdaBoost on kin8fmavg stdevDruker.S leaves= 100 trees= 20 0.2795 0.0061Druker.AD leaves= 100 trees= 20 0.2878 0.0054Z&P.AD leaves= 100 trees= 20 0.2944 0.0049Z&P.S leaves= 100 trees= 20 0.2949 0.0068LS Boost leaves= 10 trees= 20 0.2959 0.0106BR-Bagging leaves= 100 trees= 20 0.3140 0.0082LAD Boost leaves= 10 trees= 20 0.3159 0.0117Bagging leaves= 100 trees= 20 0.3163 0.0059W-Bagging leaves= 100 trees= 20 0.3297 0.0068CVA leaves= 100 trees= 5 0.3583 0.0087RegTree leaves= 100 0.4389 0.0034

Table 5.17. Errors of SVM and REx on kin8fmavg stdevCREx-MLP hidden= 15 " = 0:60 0.1317 0.0016SVM � = 0:10 C = 2 0.1360 0.0012MLP hidden= 5 0.1385 0.0021CREx-Lin " = 0:70 0.2138 0.0014Linear 0.2162 0.0011MREx-Lin " = 0:50 0.6273 0.0961MREx-MLP hidden= 5 " = 0:80 0.6767 0.4367

68
Table 5.18. Errors of Bagging and AdaBoost on kin8fhavg stdevDruker.S leaves= 100 trees= 20 0.4384 0.0040Druker.AD leaves= 100 trees= 20 0.4440 0.0055Z&P.S leaves= 100 trees= 20 0.4463 0.0051Z&P.AD leaves= 100 trees= 20 0.4463 0.0039BR-Bagging leaves= 100 trees= 20 0.4565 0.0073Bagging leaves= 100 trees= 20 0.4570 0.0055W-Bagging leaves= 100 trees= 20 0.4641 0.0055LAD Boost leaves= 2 trees= 20 0.4807 0.0045LS Boost leaves= 2 trees= 20 0.4852 0.0041CVA leaves= 100 trees= 10 0.4877 0.0082RegTree leaves= 100 0.5526 0.0054

Table 5.19. Errors of SVM and REx on kin8fhavg stdevCREx-MLP hidden= 20 " = 2:00 0.3939 0.0035SVM � = 0:10 C = 2 0.3997 0.0037MLP hidden= 5 0.4016 0.0102CREx-Lin " = 1:50 0.4204 0.0033Linear 0.4210 0.0031MREx-MLP hidden= 25 " = 1:00 0.7131 0.0771MREx-Lin " = 1:00 0.7516 0.0814

69
Table 5.20. Errors of Bagging and AdaBoost on kin8nmavg stdevDruker.AD leaves= 100 trees= 20 0.5021 0.0041Z&P.AD leaves= 100 trees= 20 0.5099 0.0051W-Bagging leaves= 100 trees= 20 0.5107 0.0066Z&P.S leaves= 100 trees= 10 0.5230 0.0040Druker.S leaves= 100 trees= 20 0.5230 0.0069BR-Bagging leaves= 100 trees= 20 0.5230 0.0035Bagging leaves= 100 trees= 20 0.5232 0.0038LS Boost leaves= 10 trees= 20 0.5283 0.0118LAD Boost leaves= 10 trees= 20 0.5306 0.0087CVA leaves= 100 trees= 10 0.5457 0.0058RegTree leaves= 100 0.5954 0.0120

Table 5.21. Errors of SVM and REx on kin8nmavg stdevSVM � = 0:10 C = 5 0.2406 0.0029CREx-MLP hidden= 30 " = 1:50 0.2551 0.0104MLP hidden= 10 0.3010 0.0050MREx-MLP hidden= 20 " = 2:00 0.5369 0.2862CREx-Lin " = 0:50 0.5895 0.0063Linear 0.6156 0.0048MREx-Lin " = 1:50 0.7665 0.0359

70
Table 5.22. Errors of Bagging and AdaBoost on kin8nhavg stdevDruker.AD leaves= 100 trees= 20 0.5966 0.0113W-Bagging leaves= 100 trees= 20 0.5967 0.0070BR-Bagging leaves= 100 trees= 20 0.5996 0.0076Druker.S leaves= 100 trees= 20 0.6002 0.0116Z&P.AD leaves= 100 trees= 20 0.6005 0.0095Bagging leaves= 100 trees= 20 0.6009 0.0066Z&P.S leaves= 100 trees= 20 0.6038 0.0121CVA leaves= 100 trees= 5 0.6154 0.0093LS Boost leaves= 10 trees= 15 0.6243 0.0102LAD Boost leaves= 10 trees= 20 0.6275 0.0107RegTree leaves= 60 0.6574 0.0105

Table 5.23. Errors of SVM and REx on kin8nhavg stdevCREx-MLP hidden= 20 " = 2:00 0.4906 0.0052SVM � = 0:20 C = 5 0.4922 0.0038MLP hidden= 10 0.5053 0.0096CREx-Lin " = 1:00 0.6397 0.0068Linear 0.6478 0.0076MREx-MLP hidden= 10 " = 1:50 0.8310 0.0381MREx-Lin " = 2:00 0.8866 0.0491

71Table 5.24. 5� 2v F -test of Bagging and AdaBoost on syndataW B B Z C Z D A D L R LB R a P V P r B r S T Ag B g S A A A R S B DW-Bagging = = = = = = = = = > =BR-Bagging = = = = = = = = = = =Bagging = = = = = = = = = = =Z&P.S = = = = = = = = = = =CVA = = = = = = = = = = =Z&P.AD = = = = = = = = = = =Druker.AD = = = = = = = = = = =AdaBoost.R = = = = = = = = = = =Druker.S = = = = = = = = = = =LS Boost = = = = = = = = = = =RegTree < = = = = = = = = = =LAD Boost = = = = = = = = = = =
Table 5.25. 5� 2v F -test of Bagging and AdaBoost on bostonD Z Z B B W D A C L L Rr P P R a B r B V S A TA A S B g g S R A B DDruker.AD = = = = = = > = > > >Z&P.AD = = = = = = > = > > >Z&P.S = = = = = = > = = = >BR-Bagging = = = = = = = = = = =Bagging = = = = = = = = = = >W-Bagging = = = = = = = = = = >Druker.S = = = = = = = = = = =AdaBoost.R < < < = = = = = = = =CVA = = = = = = = = = = =LS Boost < < = = = = = = = = =LAD Boost < < = = = = = = = = =RegTree < < < = < < = = = = =

72
Table 5.26. 5� 2v F -test of Bagging and AdaBoost on alif1000Z D W B B Z C L D A L RP r B R a P V A r B S TA A g B g S A D S R BZ&P.AD = = = > > = = = > = >Druker.AD = = = > = = = = = = >W-Bagging = = = = = = = > = = >BR-Bagging = = = = = = = = = = >Bagging < < = = = = = = = = >Z&P.S < = = = = = = = = = >CVA = = = = = = = = = = >LAD Boost = = = = = = = = = = >Druker.S = = < = = = = = = = =AdaBoost.R < = = = = = = = = = =LS Boost = = = = = = = = = = =RegTree < < < < < < < < = = =
Table 5.27. 5� 2v F -test of Bagging and AdaBoost on votesD B B W Z Z D C L L Rr a R B P P r V A S TA g B g A S S A D BDruker.AD > > > = > > > > > >Bagging < = = = > > = > > >BR-Bagging < = = = = = > > > >W-Bagging < = = = = > > > > >Z&P.AD = = = = = = = > > >Z&P.S < < = = = > = > > >Druker.S < < = < = < = > = >CVA < = < < = = = = > >LAD Boost < < < < < < < = = =LS Boost < < < < < < = < = =RegTree < < < < < < < < = =

73
Table 5.28. 5� 2v F -test of Bagging and AdaBoost on prostateL W C Z B B Z D R D LA B V P a R P r T r SD g A S g B A A S BLAD Boost = = = = = = = = > =W-Bagging = = = = = = = = > =CVA = = = = = = = = = =Z&P.S = = = = = = = = = =Bagging = = = = = = = = = >BR-Bagging = = = = = = = = > =Z&P.AD = = = = = = = = = =Druker.AD = = = = = = = = = =RegTree = = = = = = = = = =Druker.S < < = = = < = = = =LS Boost = = = = < = = = = =
Table 5.29. 5� 2v F -test of Bagging and AdaBoost on birthB B W L C Z Z D D L RR a B S V P P r r A TB g g B A S A A S DBR-Bagging = > = = = = = = = =Bagging = = = = = = = = = =W-Bagging < = = = = = = = = =LS Boost = = = = = = = = = =CVA = = = = = = = = = =Z&P.S = = = = = = = = = =Z&P.AD = = = = = = = = = =Druker.AD = = = = = = = = = =Druker.S = = = = = = = = = =LAD Boost = = = = = = = = = =RegTree = = = = = = = = = =

74
Table 5.30. 5� 2v F -test of Bagging and AdaBoost on abaloneW Z L B D L B C D Z RB P A R r S a V r P Tg A D B A B g A S SW-Bagging > = > = > = > > = >Z&P.AD < = = = > = > = = >LAD Boost = = = = > = > = = >BR-Bagging < = = = = = = = = >Druker.AD = = = = = = = = = =LS Boost < < < = = = = = = >Bagging = = = = = = = = = =CVA < < < = = = = = = >Druker.S < = = = = = = = = =Z&P.S = = = = = = = = = =RegTree < < < < = < = < = =
Table 5.31. 5� 2v F -test of Bagging and AdaBoost on kin8fmD D Z Z L B L B W C Rr r P P S R A a B V TS A A S B B D g g ADruker.S > > > = > = > > > >Druker.AD < > = = > = > > > >Z&P.AD < < = = > = > > > >Z&P.S < = = = > = > > > >LS Boost = = = = = > = = > >BR-Bagging < < < < = = = > > >LAD Boost = = = = < = = = > >Bagging < < < < = = = > > >W-Bagging < < < < = < = < > >CVA < < < < < < < < < >RegTree < < < < < < < < < <

75
Table 5.32. 5� 2v F -test of Bagging and AdaBoost on kin8fhD D Z Z B B W L L C Rr r P P R a B A S V TS A S A B g g D B ADruker.S = > > > > > > > > >Druker.AD = = = = > > > > > >Z&P.S < = = > > > > > > >Z&P.AD < = = = > > > > > >BR-Bagging < = < = = = > > > >Bagging < < < < = > > > > >W-Bagging < < < < = < > > > >LAD Boost < < < < < < < = = >LS Boost < < < < < < < = = >CVA < < < < < < < = = >RegTree < < < < < < < < < <
Table 5.33. 5� 2v F -test of Bagging and AdaBoost on kin8nmD Z W Z D B B L L C Rr P B P r R a S A V TA A g S S B g B D ADruker.AD = = > > > > = > > >Z&P.AD = = = = = > = > > >W-Bagging = = > = = = = = > >Z&P.S < = < = = = = = > >Druker.S < = = = = = = = > >BR-Bagging < = = = = = = = > >Bagging < < = = = = = = > >LS Boost = = = = = = = = > >LAD Boost < < = = = = = = = >CVA < < < < < < < < = >RegTree < < < < < < < < < <

76

Table 5.34. 5� 2v F -test of Bagging and AdaBoost on kin8nhD W B D Z B Z C L L Rr B R r P a P V S A TA g B S A g S A B DDruker.AD = = = = = = = > = >W-Bagging = = = = = = > > > >BR-Bagging = = = = = = > > > >Druker.S = = = = = = = > = >Z&P.AD = = = = = = > > > >Bagging = = = = = = = > = >Z&P.S = = = = = = = > = >CVA = < < = < = = = = >LS Boost < < < < < < < = = >LAD Boost = < < = < = = = = >RegTree < < < < < < < < < <

77Table 5.35. 5� 2v F -test of SVM and REx on syndataS M C M M C LV L R R R R iM P M M L L nSVM = > > > > >MLP = = > > > >CREx-MLP < = > > > >MREx-MLP < < < > > >MREx-Lin < < < < = =CREx-Lin < < < < = >Linear < < < < = <Table 5.36. 5� 2v F -test of SVM and REx on bostonS C M C L M MV R L R i R RM M P L n M LSVM = = > > > >CREx-MLP = = = > > =MLP = = = > > =CREx-Lin < = = = > =Linear < < < = > =MREx-MLP < < < < < =MREx-Lin < = = = = =Table 5.37. 5� 2v F -test of SVM and REx on alif1000C S M C L M MR V L R i R RM M P L n M LCREx-MLP = = > > > =SVM = = > > > =MLP = = = = > =CREx-Lin < < = = > =Linear < < = = > =MREx-MLP < < < < < =MREx-Lin = = = = = =

78Table 5.38. 5� 2v F -test of SVM and REx on votesS C M C L M MV R L R i R RM M P L n M LSVM = = > > > >CREx-MLP = = > > > >MLP = = > > > >CREx-Lin < < < > > >Linear < < < < > >MREx-MLP < < < < < =MREx-Lin < < < < < =Table 5.39. 5� 2v F -test of SVM and REx on prostateS C C L M M MV R R i L R RM M L n P L MSVM = > > = > >CREx-MLP = = = = > >CREx-Lin < = = = > >Linear < = = = > >MLP = = = = > >MREx-Lin < < < < < =MREx-MLP < < < < < =Table 5.40. 5� 2v F -test of SVM and REx on birthM C L C S M ML R i R V R RP M n L M L MMLP = = = = = =CREx-MLP = = = = = =Linear = = = = = =CREx-Lin = = = = = =SVM = = = = = =MREx-Lin = = = = = =MREx-MLP = = = = = =

79Table 5.41. 5� 2v F -test of SVM and REx on abaloneC S M C M L MR V L R R i RM M P L L n MCREx-MLP = = > = = =SVM = = > = = =MLP = = > = = =CREx-Lin < < < = = =MREx-Lin = = = = = =Linear = = = = = =MREx-MLP = = = = = =Table 5.42. 5� 2v F -test of SVM and REx on kin8fmC S M C L M MR V L R i R RM M P L n L MCREx-MLP > > > > > =SVM < = > > > =MLP < = > > > =CREx-Lin < < < > > =Linear < < < < > =MREx-Lin < < < < < =MREx-MLP = = = = = =Table 5.43. 5� 2v F -test of SVM and REx on kin8fhC S M C L M MR V L R i R RM M P L n M LCREx-MLP > = > > > >SVM < = > > > >MLP = = = = > >CREx-Lin < < = > > >Linear < < = < > >MREx-MLP < < < < < =MREx-Lin < < < < < =

80
Table 5.44. 5� 2v F -test of SVM and REx on kin8nmS C M M C L MV R L R R i RM M P M L n LSVM = > = > > >CREx-MLP = > = > > >MLP < < = > > >MREx-MLP = = = = = =CREx-Lin < < < = > >Linear < < < = < >MREx-Lin < < < = < <

Table 5.45. 5� 2v F -test of SVM and REx on kin8nhC S M C L M MR V L R i R RM M P L n M LCREx-MLP = > > > > >SVM = > > > > >MLP < < > > > >CREx-Lin < < < > > >Linear < < < < > >MREx-MLP < < < < < =MREx-Lin < < < < < =

81Table 5.46. Time omplexities of evaluationParameters ComplexityLinear DMLP M h.u. (D + 3)MCREx-Lin K ex. (D + 3)K +DCREx-MLP M h.u., K ex. (D + 3)M + (D + 2)KMREx-Lin K ex. (D + 3)K + 2DMREx-MLP M h.u., K ex. (D + 3)M + (D + 2)K +DSVM L s.v. (D + 2)LRegTree J leaves 1Mean models K models KW.Median models K models 2K5.7. Complexity AnalysisTable 5.46 shows the time omplexities of the produed models for prediting theoutput for a single example. Multipliations, divisions and exponentials were ounted,ignoring additive operations. For the regression-tree based models the balaned treease of log2 J omparisons were approximated as a single multipliation, and similarlythe additions and omparative operations in omputing the weighted median wereounted as single multipliative operation.Although the omplexity expression of the SVM model may appear smaller thanthe C-REx models, in pratie the number of support vetors is muh larger than thenumber of REx exeptions. This is primarily beause the SVM must use many loalmodels to onstrut the rule if it is to use loal models for the exeptions. In additionto the really diÆult examples, many others have to be added as the typial ones.Sine REx is able to use a ompat global rule, its exeptions are muh fewer than thesupport vetors of the SVM, on the order or �ve to �ve hundred times on our datasets.Appendix A.5 ontains the plots of test errors against time omplexity of evalua-

82

10
0

10
1

10
2

10
3

10
4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
error/complexity on kin8fm

er
ro

r

complexity (operations)

 RegTree

 Bagging

 Drucker.AD

 LAD_Boost

 Z&P.S

 SVR

 Linear

 MLP

 CREx−Lin

 CREx−MLP

 MREx−Lin

 MREx−MLP

Figure 5.21. Error and omplexity on kin8fmtion, for C-REx and M-REx with their base models, and also seperately for all familiesof algorithms to illustrate the tradeo� between the error and time omplexity. Anexample is in Figure 5.21. Note that the omplexity axis is plotted in logarithmisale.

836. CONCLUSIONS AND FUTURE WORK
The C-REx version of the proposed REx algorithm was shown to be a suessfulmahine learning algorithm that produes an intuitive and aurate model by ombin-ing a rule and a set of exeptions. Simple rules are enhaned in neessary regions byusing loally ative exeptions. If the data is very simple in most of the input spaebut misbehaves in some parts, REx an handle most data with a ompat simple ruleand onentrate further only on the anomalous part. Moreover, this struture of thedata is trivially observable from the REx model, as to where the rule ats and whatthe exeptions are. The number of exeptions is easily bounded by lustering.The ommon trait binding AdaBoost, SVM and REx is that they all exerise se-letive attention on the training set. They impliitly or expliitly di�erentiate betweentraining examples based on a measure of importane. Importane is often in parallelwith the diÆulty of learning the example, in other words the degree of hange neededin the model to inlude that example. The di�erenes lie in how the algorithms assessand exploit importane.Our expetation from mahine learning algorithms is not always sheer au-ray only. Most of the time, better understanding of the data is valuable, and ourimportane-guided models allow us a peek into the otherwise blak box. Other meth-ods like MLP or Bagging, suessful as they may be, have no suh interest in evaluatingthe data, and reveal no strutural information.AdaBoost iteratively reweights or relabels examples while adding base models, sothat the diÆult examples get a higher weight or label magnitude than others throughthe iterations. The easy examples are those that have already been learned, thosethat are already preditable with the urrent model, so their weights or labels are nearzero. As the importane level of an example inreases, the algorithm tries harder tolearn that example than others. This information is only used during training and notexpliitly stored, but the eah new base model impliitly reets the importane sores

84used while adding it.The Support Vetor Mahine algorithm diretly stores some examples as supportvetors and expliitly onstrains its model by them suh that when these \important"examples are orretly predited, all the other \easy" ones are orret within aeptableauray. Compared to AdaBoost's ontinuous weights or labels, SVM's measure ofimportane is polarized, as being a support vetor or not. The � values provide someordering among the support vetors though, espeially by separating as bounded orunbounded. All support vetors are \important", but the unbounded are the really\diÆult" ones.REx makes the learest distintion by expliitly treating some examples as \ex-eptions". These are the diÆult examples, the easy ones being explained by the rule.REx �xes exeptions to be loal fators. This makes intuitive sense beause if an ex-eption has a global e�et, then it is not an exeption but part of the rule. It alsoprovides interpretability sine thinking in terms of loal modi�ations to a general ruleis natural to the human mind.Among the algorithms desribed, REx also happens to be the only one thatan modify a linear rule into a nonlinear model. The linear model is a very simple,eÆient, understandable, and nonparametri model whih has a non-iterative analytialsolution as well as trivial di�erentiability. A solution with suh an elegant rule andloal exeptions may be ideal for many problems, a possibility only provided by RExamong these algorithms.M-REx provides sharper partitioning of data into rule and exeption regions,but obviously requires improvement. Its de�ienies an be more losely examined ondi�erent visualizable datasets and mended aordingly.The exeption onsolidation step in REx an be implemented in many otherways than K-means lustering. Other known lustering methods an be applied andtested for improvement. The initialization of varianes an be made smarter, possibly

85depending on automated distribution tests.By lustering, REx also ahieves preise ontrol of model omplexity, in ontrastto the asymptoti guidane in �-SVM.An extension of the AdaBoost-SVM-REx omparison should investigate preiselywhih examples the di�erent methods emphasize. The degree of similarity betweenAdaBoost's highest weighted examples, support vetors and REx exeptions may shedfurther light on the similarities and di�erenes between the algorithms.To level the di�erenes between types and omplexities of base models, utilitymeasures an be de�ned to balane model omplexity and overall auray. Theseutility results an also be extended for parallelism, distinguishing parallelizable andsequential algorithm steps.

86APPENDIX A: EXTRA FIGURES
A.1. Base Algorithm Errors

−5 0 5 10 15 20 25 30 35
0.5

1

1.5

2

2.5

3

3.5

4

4.5

hidden units or leaves

te
st

 e
rr

or

Linear & MLP
RegTree

Base algorithm errors for syndata −5 0 5 10 15 20 25 30 35
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

hidden units or leaves

te
st

 e
rr

or

Linear & MLP
RegTree

Base algorithm errors for boston
−5 0 5 10 15 20 25 30 35

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

hidden units or leaves

te
st

 e
rr

or

Linear & MLP
RegTree

Base algorithm errors for alif1000 −5 0 5 10 15 20 25 30 35
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

hidden units or leaves

te
st

 e
rr

or

Linear & MLP
RegTree

Base algorithm errors for prostate
−5 0 5 10 15 20 25 30 35

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

hidden units or leaves

te
st

 e
rr

or

Linear & MLP
RegTree

Base algorithm errors for votes −5 0 5 10 15 20 25 30 35
0.6

0.8

1

1.2

1.4

1.6

1.8

2

hidden units or leaves

te
st

 e
rr

or

Linear & MLP
RegTree

Base algorithm errors for birthFigure A.1. Base algorithm errors

87

−5 0 5 10 15 20 25 30 35
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

hidden units or leaves

te
st

 e
rr

or
Linear & MLP
RegTree

Base algorithm errors for kin8fm −5 0 5 10 15 20 25 30 35
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

hidden units or leaves

te
st

 e
rr

or

Linear & MLP
RegTree

Base algorithm errors for kin8fh
−5 0 5 10 15 20 25 30 35

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

hidden units or leaves

te
st

 e
rr

or

Linear & MLP
RegTree

Base algorithm errors for kin8nm −5 0 5 10 15 20 25 30 35
0.45

0.5

0.55

0.6

0.65

0.7

0.75

hidden units or leaves

te
st

 e
rr

or

Linear & MLP
RegTree

Base algorithm errors for kin8nh
−5 0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

hidden units or leaves

te
st

 e
rr

or

Linear & MLP
RegTree

Base algorithm errors for abaloneFigure A.2. Base algorithm errors (ontinued)

88A.2. Outputs on syndataA.2.1. Base Models on syndata

−5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15
Linear

Linear on syndata −5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15
MLP−2

MLP-2 on syndata
−5 −4 −3 −2 −1 0 1 2 3 4 5

−15

−10

−5

0

5

10

15
MLP−5

MLP-5 on syndata −5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15
MLP−10

MLP-10 on syndata
−5 −4 −3 −2 −1 0 1 2 3 4 5

−15

−10

−5

0

5

10

15
MLP−15

MLP-15 on syndata −5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15
MLP−20

MLP-20 on syndataFigure A.3. Linear and MLP models on syndata

89

−5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15
2−leaf Regression Tree

2-leaf regression tree on syndata −5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15
5−leaf Regression Tree

5-leaf regression tree on syndata
−5 −4 −3 −2 −1 0 1 2 3 4 5

−15

−10

−5

0

5

10

15
10−leaf Regression Tree

10-leaf regression tree on syndata −5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15
15−leaf Regression Tree

15-leaf regression tree on syndata
−5 −4 −3 −2 −1 0 1 2 3 4 5

−15

−10

−5

0

5

10

15
20−leaf Regression Tree

20-leaf regression tree on syndata −5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15
25−leaf Regression Tree

25-leaf regression tree on syndataFigure A.4. Regression tree models on syndata

90A.2.2. C-REx on syndata

−5 −4 −3 −2 −1 0 1 2 3 4 5
−20

−15

−10

−5

0

5

10

15

20
CREX−Lin, threshold=2.5

CREx Linear on syndata −5 −4 −3 −2 −1 0 1 2 3 4 5
−25

−20

−15

−10

−5

0

5

10

15
CREX−MLP−2, threshold=1.4

CREx MLP-2 on syndata
−5 −4 −3 −2 −1 0 1 2 3 4 5

−15

−10

−5

0

5

10

15

20

25
CREX−MLP−5, threshold=1.4

CREx MLP-5 on syndata −5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15
CREX−MLP−10, threshold=1.4

CREx MLP-10 on syndata
−5 −4 −3 −2 −1 0 1 2 3 4 5

−15

−10

−5

0

5

10

15
CREX−MLP−15, threshold=1.4

CREx MLP-15 on syndata −5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15
CREX−MLP−20, threshold=1.4

CREx MLP-20 on syndataFigure A.5. C-REx without lustering on syndata

91A.2.3. C-REx on syndata

−5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15
MREX−Lin, threshold=1.4

MREx Linear on syndata −5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15
MREX−MLP−2, threshold=1.4

MREx MLP-2 on syndata
−5 −4 −3 −2 −1 0 1 2 3 4 5

−15

−10

−5

0

5

10

15
MREX−MLP−5, threshold=1.2

MREx MLP-5 on syndata −5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15
MREX−MLP−10, threshold=1.2

MREx MLP-10 on syndata
−5 −4 −3 −2 −1 0 1 2 3 4 5

−15

−10

−5

0

5

10

15
MREX−MLP−15, threshold=1.2

MREx MLP-15 on syndata −5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15
MREX−MLP−20, threshold=1.2

MREx MLP-20 on syndataFigure A.6. M-REx without lustering on syndata

92A.2.4. C-REx with Clustering on syndata

−5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15
CREx−Lin threshold=1.8, k=10

CREx Linear, K = 10 on syndata −5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15
CREx−MLP−2 threshold=1.4, k=10

CREx MLP-2, K = 10 on syndata
−5 −4 −3 −2 −1 0 1 2 3 4 5

−15

−10

−5

0

5

10

15
CREx−MLP−5, threshold=1.4, k=10

CREx MLP-5, K = 10 on syndata −5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15
CREx−MLP−10, threshold=1.4, k=10

CREx MLP-10, K = 10 on syndata
−5 −4 −3 −2 −1 0 1 2 3 4 5

−15

−10

−5

0

5

10

15
cREX−MLP−15, threshold=1.4, k=10

CREx MLP-15, K = 10 on syndata −5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15
CREx−MLP−20, threshold=1.4, k=10

CREx MLP-20, K = 10 on syndataFigure A.7. C-REx with lustering on syndata

93A.2.5. MREx with Clustering on syndata

−5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15
MREx−Lin threshold=1.4, k=10

MREx Linear, K = 10 on syndata −5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15
MREx−MLP−2 threshold=1.4, k=10

MREx MLP-2, K = 10 on syndata
−5 −4 −3 −2 −1 0 1 2 3 4 5

−15

−10

−5

0

5

10

15
MREx−MLP−5, threshold=1.4, k=10

MREx MLP-5, K = 10 on syndata −5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15
MREx−MLP−10, threshold=1.4, k=10

MREx MLP-10, K = 10 on syndata
−5 −4 −3 −2 −1 0 1 2 3 4 5

−15

−10

−5

0

5

10

15
mREX−MLP−15, threshold=1.4, k=10

MREx MLP-15, K = 10 on syndata −5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15
mREX−MLP−20, threshold=1.4, k=10

MREx MLP-20, K = 10 on syndataFigure A.8. M-REx with lustering on syndata

94A.3. ThresholdsA.3.1. CREx Thresholds

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
−2

−1

0

1

2

3

4

5

6

7

8

threshold

syndata CREx−Lin

Exceptions
Test Error
Linear

CREx-Lin errors on syndata 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.5

1

1.5

2

2.5

3

3.5

threshold

syndata CREx−MLP 2

Exceptions
Test Error
MLP−2 CREx-MLP-2 errors on syndata

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.5

1

1.5

2

2.5

3

3.5

threshold

syndata CREx−MLP 5

Exceptions
Test Error
MLP−5

CREx-MLP-5 errors on syndata 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.5

1

1.5

2

2.5

3

3.5

threshold

syndata CREx−MLP 10

Exceptions
Test Error
MLP−10

CREx-MLP-10 errors on syndata
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

threshold

syndata CREx−MLP 15

Exceptions
Test Error
MLP−15

CREx-MLP-15 errors on syndata 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.5

1

1.5

2

2.5

3

3.5

threshold

syndata CREx−MLP 20

Exceptions
Test Error
MLP−20

CREx-MLP-20 errors on syndataFigure A.9. C-REx thresholds on syndata

95

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

threshold

boston CREx−Lin

Exceptions
Test Error
Linear

CREx-Lin errors on boston 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

threshold

boston CREx−MLP 2

Exceptions
Test Error
MLP−2

CREx-MLP-2 errors on boston
0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

threshold

boston CREx−MLP 5

Exceptions
Test Error
MLP−5

CREx-MLP-5 errors on boston 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

threshold

boston CREx−MLP 10

Exceptions
Test Error
MLP−10

CREx-MLP-10 errors on boston
0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

threshold

boston CREx−MLP 15

Exceptions
Test Error
MLP−15

CREx-MLP-15 errors on boston 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

threshold

boston CREx−MLP 20

Exceptions
Test Error
MLP−20

CREx-MLP-20 errors on bostonFigure A.10. C-REx thresholds on boston

96

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

threshold

calif1000 CREx−Lin

Exceptions
Test Error
Linear

CREx-Lin errors on alif1000 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

threshold

calif1000 CREx−MLP 2

Exceptions
Test Error
MLP−2

CREx-MLP-2 errors on alif1000
0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

threshold

calif1000 CREx−MLP 5

Exceptions
Test Error
MLP−5

CREx-MLP-5 errors on alif1000 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

threshold

calif1000 CREx−MLP 10

Exceptions
Test Error
MLP−10

CREx-MLP-10 errors on alif1000
0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

threshold

calif1000 CREx−MLP 15

Exceptions
Test Error
MLP−15

CREx-MLP-15 errors on alif1000 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

threshold

calif1000 CREx−MLP 20

Exceptions
Test Error
MLP−20

CREx-MLP-20 errors on alif1000Figure A.11. C-REx thresholds on alif1000

97

0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

threshold

prostate CREx−Lin

Exceptions
Test Error
Linear

CREx-Lin errors on prostate 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

threshold

prostate CREx−MLP 2

Exceptions
Test Error
MLP−2

CREx-MLP-2 errors on prostate
0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

threshold

prostate CREx−MLP 5

Exceptions
Test Error
MLP−5

CREx-MLP-5 errors on prostate 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

threshold

prostate CREx−MLP 10

Exceptions
Test Error
MLP−10

CREx-MLP-10 errors on prostate
0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

threshold

prostate CREx−MLP 15

Exceptions
Test Error
MLP−15

CREx-MLP-15 errors on prostate 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

threshold

prostate CREx−MLP 20

Exceptions
Test Error
MLP−20

CREx-MLP-20 errors on prostateFigure A.12. C-REx thresholds on prostate

98

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

threshold

votes CREx−Lin

Exceptions
Test Error
Linear

CREx-Lin errors on votes 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

threshold

votes CREx−MLP 2

Exceptions
Test Error
MLP−2

CREx-MLP-2 errors on votes
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

threshold

votes CREx−MLP 5

Exceptions
Test Error
MLP−5

CREx-MLP-5 errors on votes 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

threshold

votes CREx−MLP 10

Exceptions
Test Error
MLP−10

CREx-MLP-10 errors on votes
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

threshold

votes CREx−MLP 15

Exceptions
Test Error
MLP−15

CREx-MLP-15 errors on votes 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

threshold

votes CREx−MLP 20

Exceptions
Test Error
MLP−20

CREx-MLP-20 errors on votesFigure A.13. C-REx thresholds on votes

99

0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

threshold

birth CREx−Lin

Exceptions
Test Error
Linear

CREx-Lin errors on birth 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

threshold

birth CREx−MLP 2

Exceptions
Test Error
MLP−2

CREx-MLP-2 errors on birth
0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

threshold

birth CREx−MLP 5

Exceptions
Test Error
MLP−5

CREx-MLP-5 errors on birth 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

threshold

birth CREx−MLP 10

Exceptions
Test Error
MLP−10

CREx-MLP-10 errors on birth
0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

threshold

birth CREx−MLP 15

Exceptions
Test Error
MLP−15

CREx-MLP-15 errors on birth 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

threshold

birth CREx−MLP 20

Exceptions
Test Error
MLP−20

CREx-MLP-20 errors on birthFigure A.14. C-REx thresholds on birth

100

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

0.05

0.1

0.15

0.2

0.25

threshold

kin8fm CREx−Lin

Exceptions
Test Error
Linear

CREx-Lin errors on kin8fm 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

0.05

0.1

0.15

0.2

0.25

threshold

kin8fm CREx−MLP 2

Exceptions
Test Error
MLP−2

CREx-MLP-2 errors on kin8fm
0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

threshold

kin8fm CREx−MLP 5

Exceptions
Test Error
MLP−5

CREx-MLP-5 errors on kin8fm 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

0.05

0.1

0.15

0.2

0.25

threshold

kin8fm CREx−MLP 10

Exceptions
Test Error
MLP−10

CREx-MLP-10 errors on kin8fm
0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

threshold

kin8fm CREx−MLP 15

Exceptions
Test Error
MLP−15

CREx-MLP-15 errors on kin8fm 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

threshold

kin8fm CREx−MLP 20

Exceptions
Test Error
MLP−20

CREx-MLP-20 errors on kin8fmFigure A.15. C-REx thresholds on kin8fm

101

0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

threshold

kin8fh CREx−Lin

Exceptions
Test Error
Linear

CREx-Lin errors on kin8fh 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

threshold

kin8fh CREx−MLP 2

Exceptions
Test Error
MLP−2

CREx-MLP-2 errors on kin8fh
0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

threshold

kin8fh CREx−MLP 5

Exceptions
Test Error
MLP−5

CREx-MLP-5 errors on kin8fh 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

threshold

kin8fh CREx−MLP 10

Exceptions
Test Error
MLP−10

CREx-MLP-10 errors on kin8fh
0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

threshold

kin8fh CREx−MLP 15

Exceptions
Test Error
MLP−15

CREx-MLP-15 errors on kin8fh 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

threshold

kin8fh CREx−MLP 20

Exceptions
Test Error
MLP−20

CREx-MLP-20 errors on kin8fhFigure A.16. C-REx thresholds on kin8fh

102

0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

threshold

kin8nm CREx−Lin

Exceptions
Test Error
Linear

CREx-Lin errors on kin8nm 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

threshold

kin8nm CREx−MLP 2

Exceptions
Test Error
MLP−2

CREx-MLP-2 errors on kin8nm
0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

threshold

kin8nm CREx−MLP 5

Exceptions
Test Error
MLP−5

CREx-MLP-5 errors on kin8nm 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

threshold

kin8nm CREx−MLP 10

Exceptions
Test Error
MLP−10

CREx-MLP-10 errors on kin8nm
0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

threshold

kin8nm CREx−MLP 15

Exceptions
Test Error
MLP−15

CREx-MLP-15 errors on kin8nm 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

threshold

kin8nm CREx−MLP 20

Exceptions
Test Error
MLP−20

CREx-MLP-20 errors on kin8nmFigure A.17. C-REx thresholds on kin8nm

103

0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

threshold

kin8nh CREx−Lin

Exceptions
Test Error
Linear

CREx-Lin errors on kin8nh 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

threshold

kin8nh CREx−MLP 2

Exceptions
Test Error
MLP−2

CREx-MLP-2 errors on kin8nh
0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

threshold

kin8nh CREx−MLP 5

Exceptions
Test Error
MLP−5

CREx-MLP-5 errors on kin8nh 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

threshold

kin8nh CREx−MLP 10

Exceptions
Test Error
MLP−10

CREx-MLP-10 errors on kin8nh
0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

threshold

kin8nh CREx−MLP 15

Exceptions
Test Error
MLP−15

CREx-MLP-15 errors on kin8nh 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

threshold

kin8nh CREx−MLP 20

Exceptions
Test Error
MLP−20

CREx-MLP-20 errors on kin8nhFigure A.18. C-REx thresholds on kin8nh

104A.3.2. MREx Thresholds

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

threshold

syndata MREx−Lin

Exceptions
Test Error
Linear

MREx-Lin errors on syndata 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

threshold

syndata MREx−MLP 2

Exceptions
Test Error
MLP−2 MREx-MLP-2 errors on syndata

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

threshold

syndata MREx−MLP 5

Exceptions
Test Error
MLP−5

MREx-MLP-5 errors on syndata 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

threshold

syndata MREx−MLP 10

Exceptions
Test Error
MLP−10

MREx-MLP-10 errors on syndata
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

1

2

3

4

5

6

threshold

syndata MREx−MLP 15

Exceptions
Test Error
MLP−15

MREx-MLP-15 errors on syndata 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

threshold

syndata MREx−MLP 20

Exceptions
Test Error
MLP−20

MREx-MLP-20 errors on syndataFigure A.19. M-REx thresholds on syndata

105

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

threshold

boston MREx−Lin

Exceptions
Test Error
Linear

MREx-Lin errors on boston 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

threshold

boston MREx−MLP 2

Exceptions
Test Error
MLP−2

MREx-MLP-2 errors on boston
0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

threshold

boston MREx−MLP 5

Exceptions
Test Error
MLP−5

MREx-MLP-5 errors on boston 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

threshold

boston MREx−MLP 10

Exceptions
Test Error
MLP−10

MREx-MLP-10 errors on boston
0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

threshold

boston MREx−MLP 15

Exceptions
Test Error
MLP−15

MREx-MLP-15 errors on boston 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

threshold

boston MREx−MLP 20

Exceptions
Test Error
MLP−20

MREx-MLP-20 errors on bostonFigure A.20. M-REx thresholds on boston

106

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

threshold

calif1000 MREx−Lin

Exceptions
Test Error
Linear

MREx-Lin errors on alif1000 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

threshold

calif1000 MREx−MLP 2

Exceptions
Test Error
MLP−2

MREx-MLP-2 errors on alif1000
0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

−0.5

0

0.5

1

1.5

2

2.5

threshold

calif1000 MREx−MLP 5

Exceptions
Test Error
MLP−5

MREx-MLP-5 errors on alif1000 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
−2

−1

0

1

2

3

4

5

threshold

calif1000 MREx−MLP 10

Exceptions
Test Error
MLP−10

MREx-MLP-10 errors on alif1000
0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0

0.5

1

1.5

2

2.5

threshold

calif1000 MREx−MLP 15

Exceptions
Test Error
MLP−15

MREx-MLP-15 errors on alif1000 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
−0.5

0

0.5

1

1.5

2

threshold

calif1000 MREx−MLP 20

Exceptions
Test Error
MLP−20

MREx-MLP-20 errors on alif1000Figure A.21. M-REx thresholds on alif1000

107

0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

threshold

prostate MREx−Lin

Exceptions
Test Error
Linear

MREx-Lin errors on prostate 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

threshold

prostate MREx−MLP 2

Exceptions
Test Error
MLP−2

MREx-MLP-2 errors on prostate
0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

threshold

prostate MREx−MLP 5

Exceptions
Test Error
MLP−5

MREx-MLP-5 errors on prostate 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

threshold

prostate MREx−MLP 10

Exceptions
Test Error
MLP−10

MREx-MLP-10 errors on prostate
0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

threshold

prostate MREx−MLP 15

Exceptions
Test Error
MLP−15

MREx-MLP-15 errors on prostate 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

threshold

prostate MREx−MLP 20

Exceptions
Test Error
MLP−20

MREx-MLP-20 errors on prostateFigure A.22. M-REx thresholds on prostate

108

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

threshold

votes MREx−Lin

Exceptions
Test Error
Linear

MREx-Lin errors on votes 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

threshold

votes MREx−MLP 2

Exceptions
Test Error
MLP−2

MREx-MLP-2 errors on votes
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

threshold

votes MREx−MLP 5

Exceptions
Test Error
MLP−5

MREx-MLP-5 errors on votes 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

threshold

votes MREx−MLP 10

Exceptions
Test Error
MLP−10

MREx-MLP-10 errors on votes
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

threshold

votes MREx−MLP 15

Exceptions
Test Error
MLP−15

MREx-MLP-15 errors on votes 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

threshold

votes MREx−MLP 20

Exceptions
Test Error
MLP−20

MREx-MLP-20 errors on votesFigure A.23. M-REx thresholds on votes

109

0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

threshold

birth MREx−Lin

Exceptions
Test Error
Linear

MREx-Lin errors on birth 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

threshold

birth MREx−MLP 2

Exceptions
Test Error
MLP−2

MREx-MLP-2 errors on birth
0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

threshold

birth MREx−MLP 5

Exceptions
Test Error
MLP−5

MREx-MLP-5 errors on birth 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

threshold

birth MREx−MLP 10

Exceptions
Test Error
MLP−10

MREx-MLP-10 errors on birth
0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

threshold

birth MREx−MLP 15

Exceptions
Test Error
MLP−15

MREx-MLP-15 errors on birth 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

threshold

birth MREx−MLP 20

Exceptions
Test Error
MLP−20

MREx-MLP-20 errors on birthFigure A.24. M-REx thresholds on birth

110

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

threshold

kin8fm MREx−Lin

Exceptions
Test Error
Linear

MREx-Lin errors on kin8fm 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

threshold

kin8fm MREx−MLP 2

Exceptions
Test Error
MLP−2

MREx-MLP-2 errors on kin8fm
0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

threshold

kin8fm MREx−MLP 5

Exceptions
Test Error
MLP−5

MREx-MLP-5 errors on kin8fm 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

threshold

kin8fm MREx−MLP 10

Exceptions
Test Error
MLP−10

MREx-MLP-10 errors on kin8fm
0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

threshold

kin8fm MREx−MLP 15

Exceptions
Test Error
MLP−15

MREx-MLP-15 errors on kin8fm 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

threshold

kin8fm MREx−MLP 20

Exceptions
Test Error
MLP−20

MREx-MLP-20 errors on kin8fmFigure A.25. M-REx thresholds on kin8fm

111

0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

threshold

kin8fh MREx−Lin

Exceptions
Test Error
Linear

MREx-Lin errors on kin8fh 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

threshold

kin8fh MREx−MLP 2

Exceptions
Test Error
MLP−2

MREx-MLP-2 errors on kin8fh
0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

threshold

kin8fh MREx−MLP 5

Exceptions
Test Error
MLP−5

MREx-MLP-5 errors on kin8fh 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

threshold

kin8fh MREx−MLP 10

Exceptions
Test Error
MLP−10

MREx-MLP-10 errors on kin8fh
0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

threshold

kin8fh MREx−MLP 15

Exceptions
Test Error
MLP−15

MREx-MLP-15 errors on kin8fh 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

threshold

kin8fh MREx−MLP 20

Exceptions
Test Error
MLP−20

MREx-MLP-20 errors on kin8fhFigure A.26. M-REx thresholds on kin8fh

112

0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

threshold

kin8nm MREx−Lin

Exceptions
Test Error
Linear

MREx-Lin errors on kin8nm 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

threshold

kin8nm MREx−MLP 2

Exceptions
Test Error
MLP−2

MREx-MLP-2 errors on kin8nm
0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

threshold

kin8nm MREx−MLP 5

Exceptions
Test Error
MLP−5

MREx-MLP-5 errors on kin8nm 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

threshold

kin8nm MREx−MLP 10

Exceptions
Test Error
MLP−10

MREx-MLP-10 errors on kin8nm
0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

threshold

kin8nm MREx−MLP 15

Exceptions
Test Error
MLP−15

MREx-MLP-15 errors on kin8nm 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

threshold

kin8nm MREx−MLP 20

Exceptions
Test Error
MLP−20

MREx-MLP-20 errors on kin8nmFigure A.27. M-REx thresholds on kin8nm

113

0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

threshold

kin8nh MREx−Lin

Exceptions
Test Error
Linear

MREx-Lin errors on kin8nh 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

threshold

kin8nh MREx−MLP 2

Exceptions
Test Error
MLP−2

MREx-MLP-2 errors on kin8nh
0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

threshold

kin8nh MREx−MLP 5

Exceptions
Test Error
MLP−5

MREx-MLP-5 errors on kin8nh 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

threshold

kin8nh MREx−MLP 10

Exceptions
Test Error
MLP−10

MREx-MLP-10 errors on kin8nh
0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

threshold

kin8nh MREx−MLP 15

Exceptions
Test Error
MLP−15

MREx-MLP-15 errors on kin8nh 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

threshold

kin8nh MREx−MLP 20

Exceptions
Test Error
MLP−20

MREx-MLP-20 errors on kin8nhFigure A.28. M-REx thresholds on kin8nh

114A.3.3. C-REx Thresholds with Clustering

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25
1

1.5

2

threshold

syndata CREx−MLP 5 k=5

Test Error
MLP−5

CREx-MLP-5 on syndata, K = 0:01N 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0.28

0.3

0.32

0.34

0.36

0.38

0.4

threshold

boston CREx−MLP 2 k=2

Test Error
MLP−2

CREx-MLP-2 on boston, K = 0:01N
0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25

−20

−10

0

10

20

30

40

50

60

threshold

syndata CREx−MLP 5 k=25

Test Error
MLP−5

CREx-MLP-5 on syndata, K = 0:05N 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0.28

0.3

0.32

0.34

0.36

0.38

0.4

threshold

boston CREx−MLP 2 k=12

Test Error
MLP−2

CREx-MLP-2 on boston, K = 0:05N
0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25

−100

−50

0

50

100

150

200

threshold

syndata CREx−MLP 5 k=50

Test Error
MLP−5 CREx-MLP-5 on syndata, K = 0:1N 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.28

0.3

0.32

0.34

0.36

0.38

0.4

threshold

boston CREx−MLP 2 k=25

Test Error
MLP−2 CREx-MLP-2 on boston, K = 0:1NFigure A.29. C-REx thresholds with lustering on syndata and boston

115

0.9 1 1.1 1.2 1.3 1.4 1.5
0.37

0.38

0.39

0.4

0.41

0.42

0.43

threshold

calif1000 CREx−MLP 5 k=5

Test Error
MLP−5

CREx-MLP-5 on alif1000, K = 0:01N 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
0.465

0.47

0.475

0.48

0.485

0.49

0.495

0.5

threshold

votes CREx−Lin k=15

Test Error
Linear

CREx-Lin on votes, K = 0:01N
0.9 1 1.1 1.2 1.3 1.4 1.5

0.37

0.38

0.39

0.4

0.41

0.42

0.43

threshold

calif1000 CREx−MLP 5 k=25

Test Error
MLP−5

CREx-MLP-5 on alif1000, K = 0:05N 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
0.465

0.47

0.475

0.48

0.485

0.49

0.495

threshold

votes CREx−Lin k=77

Test Error
Linear CREx-Lin on votes, K = 0:05N

0.9 1 1.1 1.2 1.3 1.4 1.5
0.37

0.38

0.39

0.4

0.41

0.42

0.43

threshold

calif1000 CREx−MLP 5 k=50

Test Error
MLP−5

CREx-MLP-5 on alif1000, K = 0:1N 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
0.465

0.47

0.475

0.48

0.485

0.49

0.495

threshold

votes CREx−Lin k=155

Test Error
Linear CREx-Lin on votes, K = 0:1NFigure A.30. C-REx thresholds with lustering on alif1000 and votes

116

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

threshold

prostate CREx−MLP 20 k=1

Test Error
MLP−20

CREx-MLP-20 on prostate, K = 0:01N 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
0.445

0.45

0.455

0.46

0.465

0.47

0.475

0.48

0.485

threshold

abalone CREx−MLP 5 k=20

Test Error
MLP−5 CREx-MLP-5 on abalone, K = 0:01N

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

threshold

prostate CREx−MLP 20 k=9

Test Error
MLP−20

CREx-MLP-20 on prostate, K = 0:05N 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
0.445

0.45

0.455

0.46

0.465

0.47

0.475

0.48

0.485

threshold

abalone CREx−MLP 5 k=104

Test Error
MLP−5 CREx-MLP-5 on abalone, K = 0:05N

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

threshold

prostate CREx−MLP 20 k=18

Test Error
MLP−20

CREx-MLP-20 on prostate, K = 0:1N 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
0.445

0.45

0.455

0.46

0.465

0.47

0.475

0.48

0.485

threshold

abalone CREx−MLP 5 k=208

Test Error
MLP−5 CREx-MLP-5 on abalone, K = 0:1NFigure A.31. C-REx thresholds with lustering on prostate and abalone

117

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

threshold

birth CREx−MLP 2 k=2

Test Error
MLP−2

CREx-MLP-2 on birth, K = 0:01N 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0.13

0.135

0.14

0.145

0.15

0.155

0.16

0.165

0.17

0.175

0.18

threshold

kin8fm CREx−MLP 5 k=40

Test Error
MLP−5

CREx-MLP-5 on kin8fm, K = 0:01N
0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

threshold

birth CREx−MLP 2 k=12

Test Error
MLP−2

CREx-MLP-2 on birth, K = 0:05N 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0.13

0.135

0.14

0.145

0.15

0.155

0.16

0.165

0.17

0.175

0.18

threshold

kin8fm CREx−MLP 5 k=204

Test Error
MLP−5

CREx-MLP-5 on kin8fm, K = 0:05N
0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

0.7

0.75

0.8

0.85

0.9

0.95

1

threshold

birth CREx−MLP 2 k=24

Test Error
MLP−2

CREx-MLP-2 on birth, K = 0:1N 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0.13

0.135

0.14

0.145

0.15

0.155

0.16

0.165

0.17

0.175

0.18

threshold

kin8fm CREx−MLP 5 k=409

Test Error
MLP−5

CREx-MLP-5 on kin8fm, K = 0:1NFigure A.32. C-REx thresholds with lustering on birth and kin8fm

118

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0.39

0.395

0.4

0.405

0.41

0.415

0.42

0.425

0.43

threshold

kin8fh CREx−MLP 5 k=40

Test Error
MLP−5

CREx-MLP-5 on kin8fh, K = 0:01N 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

threshold

kin8nm CREx−MLP 5 k=40

Test Error
MLP−5

CREx-MLP-5 on kin8nm, K = 0:01N
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

0.39

0.395

0.4

0.405

0.41

0.415

0.42

0.425

0.43

threshold

kin8fh CREx−MLP 5 k=204

Test Error
MLP−5

CREx-MLP-5 on kin8fh, K = 0:05N 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

threshold

kin8nm CREx−MLP 5 k=204

Test Error
MLP−5

CREx-MLP-5 on kin8nm, K = 0:05N
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

0.39

0.395

0.4

0.405

0.41

0.415

0.42

0.425

0.43

threshold

kin8fh CREx−MLP 5 k=409

Test Error
MLP−5

CREx-MLP-5 on kin8fh, K = 0:1N 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

threshold

kin8nm CREx−MLP 5 k=409

Test Error
MLP−5

CREx-MLP-5 on kin8nm, K = 0:1NFigure A.33. C-REx thresholds with lustering on kin8fh and kin8nm

119

0.8 1 1.2 1.4 1.6 1.8 2 2.2
0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

threshold

kin8nh CREx−MLP 10 k=40

Test Error
MLP−10

CREx-MLP-10 on kin8nh, K = 0:01N
0.8 1 1.2 1.4 1.6 1.8 2 2.2

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

threshold

kin8nh CREx−MLP 10 k=204

Test Error
MLP−10

CREx-MLP-10 on kin8nh, K = 0:05N
0.8 1 1.2 1.4 1.6 1.8 2 2.2

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

threshold

kin8nh CREx−MLP 10 k=409

Test Error
MLP−10

CREx-MLP-10 on kin8nh, K = 0:1NFigure A.34. C-REx thresholds with lustering on kin8nh

120A.3.4. M-REx Thresholds with Clustering

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25
2

2.5

3

3.5

4

4.5

5

5.5

threshold

syndata MREx−MLP 5 k=5

Test Error
MLP−5

MREx-MLP-5 on syndata, K = 0:01N 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

threshold

boston MREx−MLP 2 k=2

Test Error
MLP−2

MREx-MLP-2 on boston, K = 0:01N
0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

threshold

syndata MREx−MLP 5 k=25

Test Error
MLP−5

MREx-MLP-5 on syndata, K = 0:05N 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.5

1

1.5

2

2.5

threshold

boston MREx−MLP 2 k=12

Test Error
MLP−2

MREx-MLP-2 on boston, K = 0:05N
0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25

−4

−2

0

2

4

6

8

10

12

threshold

syndata MREx−MLP 5 k=50

Test Error
MLP−5

MREx-MLP-5 on syndata, K = 0:1N 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.5

1

1.5

2

2.5

3

threshold

boston MREx−MLP 2 k=25

Test Error
MLP−2

MREx-MLP-2 on boston, K = 0:1NFigure A.35. M-REx thresholds with lustering on syndata and boston

121

0.9 1 1.1 1.2 1.3 1.4 1.5
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

threshold

calif1000 MREx−MLP 5 k=5

Test Error
MLP−5

MREx-MLP-5 on alif1000, K = 0:01N 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

threshold

votes MREx−Lin k=15

Test Error
Linear

MREx-Lin on votes, K = 0:01N
0.9 1 1.1 1.2 1.3 1.4 1.5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

threshold

calif1000 MREx−MLP 5 k=25

Test Error
MLP−5

MREx-MLP-5 on alif1000, K = 0:05N 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

threshold

votes MREx−Lin k=77

Test Error
Linear

MREx-Lin on votes, K = 0:05N
0.9 1 1.1 1.2 1.3 1.4 1.5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

threshold

calif1000 MREx−MLP 5 k=50

Test Error
MLP−5

MREx-MLP-5 on alif1000, K = 0:1N 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

threshold

votes MREx−Lin k=155

Test Error
Linear

MREx-Lin on votes, K = 0:1NFigure A.36. M-REx thresholds with lustering on alif1000 and votes

122

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
0.55

0.6

0.65

0.7

0.75

0.8

threshold

prostate MREx−MLP 20 k=1

Test Error
MLP−20

MREx-MLP-20 on prostate, K = 0:01N 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
−1

0

1

2

3

4

5

6

7

8

threshold

abalone MREx−MLP 5 k=20

Test Error
MLP−5

MREx-MLP-5 on abalone, K = 0:01N
0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

threshold

prostate MREx−MLP 20 k=9

Test Error
MLP−20

MREx-MLP-20 on prostate, K = 0:05N 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
−1

0

1

2

3

4

5

6

7

8

threshold

abalone MREx−MLP 5 k=104

Test Error
MLP−5

MREx-MLP-5 on abalone, K = 0:05N
0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

threshold

prostate MREx−MLP 20 k=18

Test Error
MLP−20

MREx-MLP-20 on prostate, K = 0:1N 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
−2

0

2

4

6

8

10

threshold

abalone MREx−MLP 5 k=208

Test Error
MLP−5

MREx-MLP-5 on abalone, K = 0:1NFigure A.37. M-REx thresholds with lustering on prostate and abalone

123

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
0.5

1

1.5

2

2.5

3

threshold

birth MREx−MLP 2 k=2

Test Error
MLP−2

MREx-MLP-2 on birth, K = 0:01N 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

threshold

kin8fm MREx−MLP 5 k=40

Test Error
MLP−5

MREx-MLP-5 on kin8fm, K = 0:01N
0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

0.6

0.8

1

1.2

1.4

1.6

1.8

2

threshold

birth MREx−MLP 2 k=12

Test Error
MLP−2

MREx-MLP-2 on birth, K = 0:05N 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

threshold

kin8fm MREx−MLP 5 k=204

Test Error
MLP−5

MREx-MLP-5 on kin8fm, K = 0:05N
0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

threshold

birth MREx−MLP 2 k=24

Test Error
MLP−2

MREx-MLP-2 on birth, K = 0:1N 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
−0.5

0

0.5

1

1.5

2

2.5

threshold

kin8fm MREx−MLP 5 k=409

Test Error
MLP−5

MREx-MLP-5 on kin8fm, K = 0:1NFigure A.38. M-REx thresholds with lustering on birth and kin8fm

124

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
−1

0

1

2

3

4

5

threshold

kin8fh MREx−MLP 5 k=40

Test Error
MLP−5 MREx-MLP-5 on kin8fh, K = 0:01N 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

0

1

2

3

4

5

6

threshold

kin8nm MREx−MLP 5 k=40

Test Error
MLP−5

MREx-MLP-5 on kin8nm, K = 0:01N
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

threshold

kin8fh MREx−MLP 5 k=204

Test Error
MLP−5

MREx-MLP-5 on kin8fh, K = 0:05N 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

1

2

3

4

5

6

threshold

kin8nm MREx−MLP 5 k=204

Test Error
MLP−5

MREx-MLP-5 on kin8nm, K = 0:05N
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

threshold

kin8fh MREx−MLP 5 k=409

Test Error
MLP−5

MREx-MLP-5 on kin8fh, K = 0:1N 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

threshold

kin8nm MREx−MLP 5 k=409

Test Error
MLP−5

MREx-MLP-5 on kin8nm, K = 0:1NFigure A.39. M-REx thresholds with lustering on kin8fh and kin8nm

125

0.8 1 1.2 1.4 1.6 1.8 2 2.2
0.5

1

1.5

2

2.5

3

3.5

4

4.5

threshold

kin8nh MREx−MLP 10 k=40

Test Error
MLP−10

MREx-MLP-10 on kin8nh, K = 0:01N
0.8 1 1.2 1.4 1.6 1.8 2 2.2

0.5

1

1.5

2

2.5

3

3.5

threshold

kin8nh MREx−MLP 10 k=204

Test Error
MLP−10

MREx-MLP-10 on kin8nh, K = 0:05N
0.8 1 1.2 1.4 1.6 1.8 2 2.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

threshold

kin8nh MREx−MLP 10 k=409

Test Error
MLP−10

MREx-MLP-10 on kin8nh, K = 0:1NFigure A.40. M-REx thresholds with lustering on kin8nh

126A.4. Bagging and AdaBoost Errors

0 5 10 15 20 25
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
RegTree
Bagging
Drucker.AD
LS_Boost

Boosting on syndata, 5-leaf 0 5 10 15 20 25
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2
RegTree
Bagging
Drucker.AD
LS_Boost

Boosting on syndata, 15-leaf
0 5 10 15 20 25

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

RegTree
Bagging
Drucker.AD
LS_Boost Boosting on boston, 5-leaf 0 5 10 15 20 25

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44
RegTree
Bagging
Drucker.AD
LS_Boost

Boosting on boston, 15-leaf
0 5 10 15 20 25

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

RegTree
Bagging
Drucker.AD
LS_Boost Boosting on alif1000, 5-leaf 0 5 10 15 20 25

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6
RegTree
Bagging
Drucker.AD
LS_Boost

Boosting on alif1000, 15-leafFigure A.41. Bagging and AdaBoost on syndata, boston and alif1000

127

0 5 10 15 20 25
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
RegTree
Bagging
Drucker.AD
LS_Boost

Boosting on prostate, 5-leaf 0 5 10 15 20 25
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

RegTree
Bagging
Drucker.AD
LS_Boost

Boosting on prostate, 15-leaf
0 5 10 15 20 25

0.45

0.5

0.55

0.6

0.65

0.7
RegTree
Bagging
Drucker.AD
LS_Boost

Boosting on votes, 5-leaf 0 5 10 15 20 25
0.46

0.48

0.5

0.52

0.54

0.56
RegTree
Bagging
Drucker.AD
LS_Boost

Boosting on votes, 15-leaf
0 5 10 15 20 25

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

RegTree
Bagging
Drucker.AD
LS_Boost

Boosting on birth, 5-leaf 0 5 10 15 20 25
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

RegTree
Bagging
Drucker.AD
LS_Boost

Boosting on birth, 15-leafFigure A.42. Bagging and AdaBoost on prostate, votes and birth

128

0 5 10 15 20 25
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

RegTree
Bagging
Drucker.AD
LS_Boost

Boosting on abalone, 5-leaf 0 5 10 15 20 25
0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62
RegTree
Bagging
Drucker.AD
LS_Boost

Boosting on abalone, 15-leaf
0 5 10 15 20 25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

RegTree
Bagging
Drucker.AD
LS_Boost

Boosting on kin8fm, 2-leaf 0 5 10 15 20 25
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65
RegTree
Bagging
Drucker.AD
LS_Boost

Boosting on kin8fm, 10-leaf
0 5 10 15 20 25

0.45

0.5

0.55

0.6

0.65

0.7

0.75

RegTree
Bagging
Drucker.AD
LS_Boost Boosting on kin8fh, 2-leaf 0 5 10 15 20 25

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

RegTree
Bagging
Drucker.AD
LS_Boost

Boosting on kin8fh, 10-leafFigure A.43. Bagging and AdaBoost on abalone, kin8fm and kin8fh

129

0 5 10 15 20 25
0.62

0.64

0.66

0.68

0.7

0.72

0.74

RegTree
Bagging
Drucker.AD
LS_Boost

Boosting on kin8nm, 2-leaf 0 5 10 15 20 25
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

RegTree
Bagging
Drucker.AD
LS_Boost

Boosting on kin8nm, 10-leaf
0 5 10 15 20 25

0.64

0.65

0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73

RegTree
Bagging
Drucker.AD
LS_Boost

Boosting on kin8nh, 2-leaf 0 5 10 15 20 25
0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.7
RegTree
Bagging
Drucker.AD
LS_Boost

Boosting on kin8nh, 10-leaf
Figure A.44. Bagging and AdaBoost on kin8nm and kin8nh

130A.5. Time Complexities

0 20 40 60 80 100 120
0.5

1

1.5

2

2.5

3

3.5
CREx error/complexity on syndata

er
ro

r

complexity (operations)

Lin

 CREx−Lin

MLP−5

 CREx−MLP−5

MLP−10

 CREx−MLP−10

MLP−15

 CREx−MLP−15

Figure A.45. Error/Complexity of C-REx on syndata

0 50 100 150 200 250 300
0.5

1

1.5

2

2.5

3

3.5
MREx error/complexity on syndata

er
ro

r

complexity (operations)

Lin

 MREx−Lin

MLP−5

 MREx−MLP−5

MLP−10

 MREx−MLP−10

MLP−15

 MREx−MLP−15

Figure A.46. Error/Complexity of M-REx on syndata

131

0 100 200 300 400 500 600 700 800 900
0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4
CREx error/complexity on boston

er
ro

r

complexity (operations)

Lin

 CREx−Lin

MLP−2

 CREx−MLP−2

MLP−5
 CREx−MLP−5

MLP−10

 CREx−MLP−10

Figure A.47. Error/Complexity of C-REx on boston

0 50 100 150 200 250 300 350 400 450
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
MREx error/complexity on boston

er
ro

r

complexity (operations)

Lin

 MREx−Lin

MLP−2

 MREx−MLP−2

MLP−5

 MREx−MLP−5

MLP−10

 MREx−MLP−10

Figure A.48. Error/Complexity of M-REx on boston

132

0 100 200 300 400 500 600 700 800 900
0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.46
CREx error/complexity on calif1000

er
ro

r

complexity (operations)

Lin

 CREx−Lin

MLP−5

 CREx−MLP−5

MLP−20

 CREx−MLP−20

Figure A.49. Error/Complexity of C-REx on alif1000

0 100 200 300 400 500 600 700 800 900
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
MREx error/complexity on calif1000

er
ro

r

complexity (operations)

Lin

 MREx−Lin

MLP−5

 MREx−MLP−5

MLP−20

 MREx−MLP−20

Figure A.50. Error/Complexity of M-REx on alif1000

133

0 100 200 300 400 500 600
0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5
CREx error/complexity on votes

er
ro

r

complexity (operations)

Lin

 CREx−Lin

MLP−15

 CREx−MLP−15

MLP−20
 CREx−MLP−20

Figure A.51. Error/Complexity of C-REx on votes

0 200 400 600 800 1000 1200 1400 1600 1800
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
MREx error/complexity on votes

er
ro

r

complexity (operations)

Lin

 MREx−Lin

MLP−15

 MREx−MLP−15

MLP−20

 MREx−MLP−20

Figure A.52. Error/Complexity of M-REx on votes

134

0 100 200 300 400 500 600 700
0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7
CREx error/complexity on prostate

er
ro

r

complexity (operations)

Lin CREx−Lin

MLP−20

 CREx−MLP−20

MLP−30

 CREx−MLP−30

Figure A.53. Error/Complexity of C-REx on prostate

0 100 200 300 400 500 600 700
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
MREx error/complexity on prostate

er
ro

r

complexity (operations)

Lin

 MREx−Lin

MLP−20

 MREx−MLP−20

MLP−30

 MREx−MLP−30

Figure A.54. Error/Complexity of M-REx on prostate

135

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5
CREx error/complexity on abalone

er
ro

r

complexity (operations)

Lin

 CREx−Lin

MLP−5

 CREx−MLP−5

MLP−10
 CREx−MLP−10

Figure A.55. Error/Complexity of C-REx on abalone

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

3.5
MREx error/complexity on abalone

er
ro

r

complexity (operations)

Lin

 MREx−Lin

MLP−5

 MREx−MLP−5

MLP−10

 MREx−MLP−10

Figure A.56. Error/Complexity of M-REx on abalone

136

0 20 40 60 80 100 120 140 160 180
0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81
CREx error/complexity on birth

er
ro

r

complexity (operations)

Lin

 CREx−Lin

MLP−2
 CREx−MLP−2

MLP−5

 CREx−MLP−5

Figure A.57. Error/Complexity of C-REx on birth

0 50 100 150 200 250 300 350
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05
MREx error/complexity on birth

er
ro

r

complexity (operations)

Lin

 MREx−Lin

MLP−2

 MREx−MLP−2

MLP−5

 MREx−MLP−5

Figure A.58. Error/Complexity of M-REx on birth

137

0 100 200 300 400 500 600 700 800 900
0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22
CREx error/complexity on kin8fm

er
ro

r

complexity (operations)

Lin CREx−Lin

MLP−5 CREx−MLP−5

MLP−15 CREx−MLP−15Figure A.59. Error/Complexity of C-REx on kin8fm

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

1.2

1.4
MREx error/complexity on kin8fm

er
ro

r

complexity (operations)

Lin

 MREx−Lin

MLP−5

 MREx−MLP−5

MLP−15

 MREx−MLP−15

Figure A.60. Error/Complexity of M-REx on kin8fm

138

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0.385

0.39

0.395

0.4

0.405

0.41

0.415

0.42

0.425
CREx error/complexity on kin8fh

er
ro

r

complexity (operations)

Lin

 CREx−Lin

MLP−5

 CREx−MLP−5MLP−20

 CREx−MLP−20

MLP−25

 CREx−MLP−25

Figure A.61. Error/Complexity of C-REx on kin8fh

0 1000 2000 3000 4000 5000 6000
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85
MREx error/complexity on kin8fh

er
ro

r

complexity (operations)

Lin

 MREx−Lin

MLP−5

 MREx−MLP−5

MLP−20

 MREx−MLP−20

MLP−25

 MREx−MLP−25

Figure A.62. Error/Complexity of M-REx on kin8fh

139

0 100 200 300 400 500 600 700 800 900
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65
CREx error/complexity on kin8nm

er
ro

r

complexity (operations)

Lin

 CREx−Lin

MLP−5
 CREx−MLP−5

MLP−20

 CREx−MLP−20

MLP−30

 CREx−MLP−30Figure A.63. Error/Complexity of C-REx on kin8nm

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
MREx error/complexity on kin8nm

er
ro

r

complexity (operations)

Lin

 MREx−Lin

MLP−5

 MREx−MLP−5

MLP−20

 MREx−MLP−20

MLP−30

 MREx−MLP−30

Figure A.64. Error/Complexity of M-REx on kin8nm

140

0 100 200 300 400 500 600 700 800 900
0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66
CREx error/complexity on kin8nh

er
ro

r

complexity (operations)

Lin

 CREx−Lin

MLP−10 CREx−MLP−10

MLP−20 CREx−MLP−20Figure A.65. Error/Complexity of C-REx on kin8nh

0 500 1000 1500 2000 2500
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95
MREx error/complexity on kin8nh

er
ro

r

complexity (operations)

Lin

 MREx−Lin

MLP−10

 MREx−MLP−10

MLP−20

 MREx−MLP−20

Figure A.66. Error/Complexity of M-REx on kin8nh

141

10
0

10
1

10
2

10
3

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
error/complexity on syndata

er
ro

r

complexity (operations)

 RegTree

 Bagging

 Drucker.AD

 LAD_Boost

 Z&P.S
 SVR

 MLP

 CREx−Lin

 CREx−MLP

 MREx−Lin

 MREx−MLP

Figure A.67. Error/Complexity on syndata

10
0

10
1

10
2

10
3

10
4

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
error/complexity on boston

er
ro

r

complexity (operations)

 RegTree

 Bagging

 Drucker.AD

 LAD_Boost

 Z&P.S SVR

 Linear

 MLP

 CREx−Lin

 CREx−MLP

 MREx−Lin

 MREx−MLP

Figure A.68. Error/Complexity on boston

142

10
0

10
1

10
2

10
3

10
4

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
error/complexity on calif1000

er
ro

r

complexity (operations)

 RegTree

 Bagging Drucker.AD

 LAD_Boost

 Z&P.S

 SVR

 Linear

 MLP

 CREx−Lin

 CREx−MLP

 MREx−Lin

 MREx−MLP

Figure A.69. Error/Complexity on alif1000

10
0

10
1

10
2

10
3

10
4

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85
error/complexity on votes

er
ro

r

complexity (operations)

 RegTree

 Bagging
 Drucker.AD

 LAD_Boost
 Z&P.S

 SVR

 Linear

 MLP

 CREx−Lin

 CREx−MLP

 MREx−Lin MREx−MLP

Figure A.70. Error/Complexity on votes

143

10
0

10
1

10
2

10
3

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76
error/complexity on prostate

er
ro

r

complexity (operations)

 RegTree

 Bagging

 Drucker.AD

 LAD_Boost

 Z&P.S

 SVR

 Linear

 MLP

 CREx−Lin CREx−MLP

 MREx−Lin MREx−MLP

Figure A.71. Error/Complexity on prostate

10
0

10
1

10
2

10
3

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96
error/complexity on birth

er
ro

r

complexity (operations)

 RegTree

 Bagging

 Drucker.AD

 LAD_Boost

 Z&P.S
 SVR

 Linear
 MLP

 CREx−Lin
 CREx−MLP

 MREx−Lin

 MREx−MLP

Figure A.72. Error/Complexity on birth

144

10
0

10
1

10
2

10
3

10
4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
error/complexity on kin8fm

er
ro

r

complexity (operations)

 RegTree

 Bagging

 Drucker.AD

 LAD_Boost

 Z&P.S

 SVR

 Linear

 MLP

 CREx−Lin

 CREx−MLP

 MREx−Lin

 MREx−MLP

Figure A.73. Error/Complexity on kin8fm

10
0

10
1

10
2

10
3

10
4

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
error/complexity on kin8fh

er
ro

r

complexity (operations)

 RegTree

 Bagging
 Drucker.AD

 LAD_Boost

 Z&P.S

 SVR

 Linear

 MLP

 CREx−Lin

 CREx−MLP

 MREx−Lin

 MREx−MLP

Figure A.74. Error/Complexity on kin8fh

145

10
0

10
1

10
2

10
3

10
4

10
5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
error/complexity on kin8nm

er
ro

r

complexity (operations)

 RegTree

 Bagging

 Drucker.AD

 LAD_Boost
 Z&P.S

 SVR

 Linear

 MLP

 CREx−Lin

 CREx−MLP

 MREx−Lin

 MREx−MLP

Figure A.75. Error/Complexity on kin8nm

10
0

10
1

10
2

10
3

10
4

10
5

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
error/complexity on kin8nh

er
ro

r

complexity (operations)

 RegTree

 Bagging Drucker.AD

 LAD_Boost
 Z&P.S

 SVR

 Linear

 MLP

 CREx−Lin

 CREx−MLP

 MREx−Lin

 MREx−MLP

Figure A.76. Error/Complexity on kin8nh

146

10
0

10
1

10
2

10
3

10
4

10
5

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
error/complexity on abalone

er
ro

r

complexity (operations)

 RegTree

 Bagging
 Drucker.AD

 LAD_Boost Z&P.S

 SVR

 Linear

 MLP

 CREx−Lin

 CREx−MLP

 MREx−Lin

 MREx−MLP

Figure A.77. Error/Complexity on abalone

147REFERENCES
1. Alpayd�n, E., REx: Learning A Rule and Exeptions, Teh. Rep. TR-97-040, In-ternational Computer Siene Institute, Berkeley, CA, 1997.2. Alpayd�n, E. and C. Kaynak, \Casading Classi�ers", Kybernetika, Vol. 34, pp.369{374, 1998.3. Kaynak, C. and E. Alpayd�n, \Multistage Casading of Multiple Classi�ers: OneMan's Noise is Another Man's Data", Pro. 17th International Conferene on Ma-hine Learning , pp. 455{462, Morgan Kaufmann, San Franiso, CA, 2000.4. Kaynak, C. and E. Alpayd�n, Casading Rules and Exeptions, Teh. rep., Bo�gazi�iUniversity, Dept. of Computer Engineering, 2001.5. Kaynak, C., Combining Multiple Mahine Learning Algorithms to Learn Rules andExeptions, Ph.D. thesis, Bo�gazi�i University, Dept. of Computer Engineering,2002.6. Breiman, L., \Bagging Preditors", Mahine Learning , Vol. 24, No. 2, pp. 123{140,1996.7. Freund, Y. and R. E. Shapire, \A deision-theoreti generalization of on-linelearning and an appliation to boosting", European Conferene on ComputationalLearning Theory , pp. 23{37, 1995.8. Freund, Y. and R. E. Shapire, \Experiments with a New Boosting Algorithm",International Conferene on Mahine Learning , pp. 148{156, 1996.9. Druker, H., \Improving regressors using boosting tehniques", Pro. 14th Inter-national Conferene on Mahine Learning , pp. 107{115, Morgan Kaufmann, SanFraniso, CA, 1997.

14810. Zemel, R. S. and T. Pitassi, \A Gradient-Based Boosting Algorithm for RegressionProblems", Advanes in Neural Information Proessing Systems, Vol. 13, 2001.11. Du�y, N. and D. Helmbold, \Leveraging for Regression", Pro. 13th Annual Con-ferene on Computational Learning Theory , pp. 208{219, Morgan Kaufmann, SanFraniso, CA, 2000.12. Friedman, J. H., Greedy Funtion Approximation: a Gradient Boosting Mahine,Teh. Rep. 7, Stanford University, Dept. of Statistis, 1999.13. R�atsh, G., M. Warmuth, S. Mika, T. Onoda, S. Lemm and K.-R. M�uller, \Bar-rier Boosting", Pro. 13th Annual Conferene on Computational Learning Theory ,2000.14. Ridgeway, G., D. Madigan and T. Rihardson, \Boosting methodology for regres-sion problems", Proeedings of Arti�ial Intelligene and Statistis, pp. 152{161,1999.15. Karush, W., Minima of Funtions of Several Variables with Inequalities as SideConstraints, Master's thesis, Univ. of Chiago, Dept. of Mathematis, 1939.16. Kuhn, H. W. and A. W. Tuker, \Nonlinear Programming", Pro. 2nd BerkeleySymposium on Mathematial Statistis and Probabilistis, pp. 481{492, Univ. ofCalifornia Press, 1951.17. Merer, J., \Funtions of Positive and Negative Type and Their Connetion withthe Theory of Integral Equations", Philos. Trans. Roy. So. London, Vol. A 209,pp. 415{446, 1909.18. Smola, A. J., B. Sh�olkopf and K.-R. M�uller, \The onnetion between regulariza-tion operators and support vetor kernels", Neural Networks, Vol. 11, No. 4, pp.637{649, 1998.19. Burges, C. J. C., \Geometry and Invariane in Kernel Based Methods", Advanes

149in Kernel Methods { Support Vetor Learning , pp. 89{116, MIT Press, Cambridge,MA., 1999.20. Sh�olkopf, B., . P. Bartlett, A. Smola and R. Williamson, \Support Vetor Regres-sion with Automati Auray Control", Pro. 8th Int. Conf. on Arti�ial NeuralNetworks, Perspetives in Neural Computing, pp. 111{116, Springer Verlag, Berlin,1998.21. Jaobs, R. A., M. I. Jordan, S. J. Nowlan and G. E. Hinton, \Adaptive Mixturesof Loal Experts", Neural Computation, Vol. 3, No. 1, pp. 79{87, 1991.22. Blake, C. and P. M. Murphy, \UCI Repository of Mahine Learning Databases",http://www.is.ui.edu/ mlearn/MLRepository.html.23. Hosmer, D. and S. Lemeshow, Applied Logisti Regression, John Wiley & SonsIn., seond edn., 2000.24. Chang, C.-C. and C.-J. Lin, \LIBSVM: a Library for Support Vetor Mahines(Version 2.31)", http://iteseer.nj.ne.om/hang01libsvm.html.25. Alpayd�n, E., \Combined 5�2v F Test for Comparing Supervised Classi�ationLearning Algorithms", Neural Computation, Vol. 11, No. 8, pp. 1885{1992, 1999.

