A Neural Network Approach to the Crossword Puzzle
Problem

Zafer Barutguoglu

Department of Mathematics
Bogazici University, 80815 Bebek, Istanbul, Turkey
barutcuoglu@usa.net

Abstract

This paper proposes a connectionist solution
for the construction of crossword puzzles.
Based on a word-based approach, the problem
is expressed as a constraint satisfaction
problem. Taking advantage of a double-update
scheme, necural networks based on the
Boltzmann and Cauchy machine models are
implemented for the problem, and
performances are compared.

1. Introduction

The construction of crossword puzzles poses a
difficult problem to humans and computers
alike. Construction by hand is a task often
limited to professionals and dedicated
enthusiasts, since it requires extensive
experience.

The idea of using computers in crossword
puzzle construction is not new; indeed research
in this direction dates back to 1960. Since then,
many diverse attempts have been made to
tackle the problem. Most of these approaches
depend on backtracking-based search
techniques, which assume a centralized
control, making a parallel implementation
difficult.

When the problem is viewed as a constraint
satisfaction problem, it is possible to apply
neural network models that have proven
suitable for such problems. The parallelism
that comes with connectionist approaches
makes distributed implementations possible.
Also, the advances in VLSI allow for
inexpensive hardware implementations of
neural systems, and thus, dedicated hardware
for crossword puzzle construction may be
considered.

2. Previous Work

The research in crossword puzzle construction
can be said to have started with E. S.

Spiegelthal’s program for constructing double-
crostics, a crossword variant [1].

The computer construction of crossword
puzzles as we know them has been first studied
by L. J. Mazlack and O. Feger. Mazlack
defined two basic approaches for construction:
letter-by-letter and word-by-word. He himself
chose the former approach, and constructed
some simple puzzles using precedence
relationships [2]][3]. Feger used a larger word
list and got better results [4].

P. D. Smith and S. D. Steen used a search
scheme with an estimation-based heuristic.
They were also the first to use the basic
terminology of crossword puzzle research
today [5].

A logic-based approach to the crossword
puzzle was given by H. Berghel. It was shown
that any grid and word list could be expressed
as a set of Horn clauses [6]. Extending this
work, Berghel and C. Yi developed a
crossword-compiler-compiler, a program that
given a word list and a grid, outputs a program
that in turn produces a crossword puzzle with
the given grid and list [7].

J. M. Wilson expressed the problem as pure 0-
1 integer programming problems for both the
letter-based and the word-based approaches
[8]. We will further examine Wilson’s models.

Ginsberg et al. applied a number of heuristics
from artificial intelligence to the basic
backtracking search, favoring different factors
in choosing moves [9].

S. C. Jensen’s thesis on crossword puzzles
discusses and benchmarks existing word-based
and letter-based approaches, and proposes a
hybrid scheme [10].

As a wvariation of the basic problem,
unconstrained crossword puzzles were also
explored, ones where the grid structure is

determined dynamically by the program
[11]]12][13].

3. The Constraint Satisfaction Problem

The constraint satisfaction problem (CSP)
consists of finding an assignment of values to a
set of wvariables while satisfying a set of
constraints [14].

Each variable X; must be assigned a value from
its domain D; whose /-th element will be
denoted as d;. The assignments of a valid
solution should comply with a set of given
constraints.

Constraints in general are n-tuples that specify
disallowed simultancous assignments.
However, since constraints of all dimensions
can be represented in binary constraints by the
inclusion of additional variables, and since
simple neural network connections connect
two units, we will assume that constraints are
binary, i¢., cach constraint is of the form
(dim d;,), meaning that the m-th value of D; and
n-th value of D, cannot be simultaneously
assigned to the variables .X; and .X; respectively.

4. Neural Networks for CSPs

Neural network solutions to CSPs are
generally based on Hopfield-type networks
[15][16][17][18]. Since simple Hopfield nets
typically suffer from poor local minima,
simulated annealing is wused with the
Boltzmann machine and its variants
[19][20][21].

4.1. Hopfield-type Neural Networks

In the Hopfield-type network model, each
network unit has a binary activation state, and
symmetric weighted connections to the other
units. The energy to be minimized
corresponding to a network state is defined as
the negative sum of the weights of connections
between mutually active units [22]. Units are
encouraged to be active through positive self-
connection weights. In some conventions, self-
connections are taken as zero, but threshold
values are introduced, which in practice have
the same effect. In our discussion we will
prefer self-connections for compactness of
notation.

In a binary Hopfield-type network with Af
units, the energy at the network state

y= (yl:---: J’M) is:

1 M M
E(G)=-=2"> yymw,
2 i=l j=1
where each y; €{0,1} denotes the activation
state of the i-th unit, and w;; is the weight of the
connection between the i-th and j-th units.

The operation of the network is that at each
trial, one unit is selected randomly, and the
change in the network energy that will result if
that unit changes state is calculated:

M
algz()_;):(zyz _l Zijji

7=l

In the actual Hopfield network, the change is
accepted (an update is performed) if the energy
will decrease. Thus the network performs
simple gradient descent, and converges at a
local —but possibly not global- minimum of
the energy function. However, especially in
our constraint satisfaction perspective, local
minima occur frequently, while the objective is
to attain the global minimum, so the pure
Hopfield model is often inconvenient.

The Boltzmann machine is an improvement
over the Hopfield network that is based on
applying an annealing schedule to the energy
[19]. Acceptance of new states is no more
deterministic, but is based on a Boltzmann
probability distribution. The probability of
acceptance is:

1
b=y
1+ exp[j
T

where 7 is the temperature parameter is
introduced, which determines the tendency of
the network to discriminate between transitions
that increase energy and those that decrease it.
Starting at an initial high temperature, the
network is gradually “cooled” from unstable
hence widely distributed states to stable
minima. As the temperature tends to zero, the
behavior more closely resembles the pure
Hopfield network, but the probabilistic
unstability allows the network to escape poor
local minima while at high temperatures. The
cooling schedule should be according to the
formula

1

0

7T =—-0
“ In(l+k)

where 7y is the initial temperature, and £ is the
number of epochs, each of which consists of A/
trials.

A modification to the Boltzmann machine is
the use of the Cauchy probability distribution
instead of the Boltzmann distribution, in which
case the method is known as fast simulated
annealing, or the Cauchy machine [21]. The
Cauchy acceptance probability is:

1 1 AE
P, = ———arctan] — |.
2 T

The infinite variance of the Cauchy
distribution allows greater flexibility for large
changes to avoid local minima. Another
advantage of the Cauchy machine is that a
faster cooling schedule than the Boltzmann
machine can be used [23], and indeed is
observed to be necessary to help the net
stabilize [24]:

1, = 2 , where 1<a<2.
1+k*

4.2. A Neural Model for the CSP

In the typical Hopfield-type neural network
solution to the CSP, each network unit
represents a value of a variable. The network
can be visualized in rows of units where each
row corresponds to a variable, and the units in
the row are the values that the variable can
take.

Since a variable logically can have only one
value, the intermediate network states where
more than one node is active for a variable are
obviously inconsistent with the model. To
decrease the number of intermediate network
states, a double-update model is used. Based
on the group-update notion [25], this method
ensures that the network moves only between
consistent states.

The double-update scheme requires that the
network is initially in a consistent state, i.c.,
exactly one unit is active for every variable.
Then for cach trial, two units for the same
variable are chosen, one of which must be the
active unit for the variable. The energy change
is calculated for the state where both units are
altered (the other unit becomes the active unit),
so if the new state is accepted, the network is
still in a consistent state. The double-update
energy difference for row »n can be computed
as:

AE]n ()7) = Z wm'n' o Z wm']

m#n m#n

where m’ is the active unit in row m, n’is the
active unit in row #, and j is an inactive unit in
row n being tested for update.

This scheme has been shown to lead to a fast
and efficient search of the problem state space
[26].

5. The Crossword Puzzle Problem

The Crossword Puzzle Problem (CPP) is,
given a list of words (the dictionary) and a
fixed empty grid (with or without black
squares), the job of filling the grid with letters
such that every horizontal or vertical word
formed is in the dictionary, and no word is
used twice.

For a constraint satisfaction model for the
CPP, let us examine Wilson’s binary integer
models.

For the word-based case, the grid is thought of
as a set of fixed-length word-slots. The binary
variables are defined as:

B {l if wordkisin slotn
nk

0 otherwise

The constraints are:

1 Y.z, <1 foreachk

) Z z, =1 foreachn
k

3) Zan = ZZPk

kesS,, kesS,,

where S;,, is the set of words that fit in the
vertical slot #» which have the letter j in the cell
where the vertical slot » intersects with the
horizontal slot p, and S;,, denotes the set of
words allocable in the horizontal slot p which
have the letter j in the cell where the horizontal
slot p intersects with the vertical slot n [8].
This translates as the natural constraint that
words assigned to intersecting slots must have
the same letter at the cell of intersection.

Wilson’s other integer model is based on the
letter-based approach to the problem. While
the letter-based model has the advantage of a
small number of wvariables (hence small
network size) independent of word list size,

Wilson’s is indeed not a true model for the
CPP, in that it does not disallow words to be
used more than once. Actually the model is
logically less constrained than the problem,
and includes invalid solutions. Since we are in
search of a correct foundation, this model does
not meet our needs.

A true letter-based solution to the problem
cannot be achieved without sacrificing the
convenience of binary constraints, which will
in turn call for additional network nodes, or
nodes with multiple link-areas [27], which
again increase network complexity in effect
similar to the word-based case. Therefore we
will use the word-based model in our
constraint satisfaction approach.

Wilson’s second constraint indicates the nature
of a CSP, in that the slots become the
variables, and the words become the values.
The first and third constraints will form the set
of constraints for the CSP.

Now we can formulate the CPP as a CSP as
follows:

The variables X; are defined as the word-slots
in some arbitrary ordering. The values in the
domain D; of X; correspond to all dictionary
words of the same length as the i-th slot. The
set of constraints C is defined such that
(dindpm)eC if:

(a) d,, and d,, correspond to the same word in
the dictionary, or

(b) the i-th and j-th slots intersect, but the
letters of the words corresponding to d,
and d,, at the point of intersection are not
the same.

In the light of this formulation, we can now
apply a neural framework to the problem.

6. Neural Networks for the CPP

Since we expressed the CPP as a binary CSP,
the neural network models previously
discussed for CSPs can be applied. However, a
closer inspection of the problem provides some
case-specific information for improving the
design and performance of the network.

With the use of the double-update scheme, it is
ensured that each row contains exactly one
active unit at any given time. Therefore, the
self-connections introduced to encourage units
to be active, and the connections among units
of the same row are obsolete, and can be taken
as zero. Thus, all remaining non-zero

connections will serve as either invalid-
intersection or multiple-use-of-word penalties,
and can have constant negative values for each
case.

In an nxm grid with b black cells, the number
of word slots bounded above and coarsely
approximated by m+n+2b [13]. For a minimal
American-type puzzle of commercial quality,
let us assume a 10x10 grid with 15 black cells,
and a dictionary of words up to 10 letters. If
there are about 1000 words of each length, we
have a network of (10+10+2x15)x1000 =
50000 units. The weight matrix for this
network would be huge. However, all non-zero
weights can be determined on-line by looking
up the words from the dictionary when
necessary and checking slot intersections, so
we need not store a weight matrix.

Furthermore, since horizontal words are only
associated with vertical words and vice versa,
they need not have connections among
themselves. We can then visualize the network
as a bipartite of horizontal and vertical units.
This allows us to approximately halve the cost
of calculating the energy change.

A minor variation to the standard CPP is when
the initial grid may have existing letters. This
is called the protected CPP [10] and is used
especially in commercial applications. Our
model also accommodates the protected CPP,
simply by excluding from the network the
units which represent word assignments that
disagree with the existing letters.

7. Experimental Results

The proposed crossword puzzle network
scheme was implemented as both a Boltzmann
machine and a Cauchy machine.

Taking advantage of the double-update
scheme, the networks were stored as integers
for each row, representing the index of the
active unit of the row.

Both invalid-intersection and multiple-use-of-
word penalty weights were taken as -1.0, and
calculated on-line through the grid and the
dictionary. Since there are no self-connections,
the global minimum of zero represents a valid
solution.

The initial temperatures were set so that for
both networks the initial probability of
accepting an energy change of 1.0 was around
0.4. For the Cauchy machine, the parameter o
was taken as 1.

A 5x5 complete puzzle (one without black
cells) was chosen for testing, using different
dictionary sizes. It was ensured by full search
that each dictionary had exactly one solution
(and naturally its transpose).

Both networks were tested for each scenario
until a solution was found. 20 experiments
were conducted for each case, and the numbers
of epochs that took each network to find a
solution are summarized in Table 1.

Boltzmann Cauchy
Words avg stddev avg stddev
10 25 8 14 6
100 244 132 98 61
1000 1423 962 810 316

Table 1: Epochs until a solution was found

The Cauchy machine required fewer epochs as
expected. Most epochs of the Boltzmann
machine was spent in poor local minima.

The actual durations are dependent on the
particular hardware and software. On a system
with a single 200 MHz processor, despite the
low-performance high-level language used,
none of the experiments exceeded an hour.

8. Conclusion

Expressing the crossword puzzle problem as a
constraint satisfaction problem, existing
Hopfield-type neural networks suitable for
such problems were considered. Using the
benefits of a double-update method,
Boltzmann and Cauchy machines were
constructed for the proposed solution scheme.

In the experiments conducted, a solution was
found in all cases. Performances were within
practical time limits, in spite of the serial and
unoptimized implementation.

With a neural network solution to the problem,
parallel implementations may be produced,
which would have considerably superior
performance. Looking at the recent advances
in neural network circuitry, even low-cost
dedicated hardware may be possible for
crossword puzzles.

However, neural networks can converge only
to one solution, so cannot return all solutions
associated with a given scenario.

Also, compared to traditional backtracking
search techniques, the neural network solution

lacks complete reliability, due to its stochastic
nature. We cannot guarantee convergence to a
valid solution. This aspect seriously reduces
the chances of commercial popularity, but can
be remedied by a very efficient (possibly
parallel) implementation, in which the time
cost of re-running the network when
converged to a poor local minimum will be
practically insignificant.

9. References

[1] E. S. Spiegelthal, “Redundancy
Exploitation in the Computer Construction
of Double-crostics”, Proceedings of the
EJCC, pp. 39-56, 1960.

[2] L. J. Mazlack, “Computer Construction of
Crossword Puzzles Using Precedence
Relationships”, Artificial Intelligence,
Vol. 7, No. 1, pp. 1-19, 1976.

[3] L. J. Mazlack, “Machine Selection of
Elements in Crossword Puzzles”, SIAM
Journal of Computing, Vol. 5, No. 1, pp.
51-72, 1976.

[4] O. Feger, “A Program for the Construction
of Crossword Puzzles”, Angewandte
Informatik, Vol. 17, No. 5, pp. 189-195,
1975.

[5] P. D. Smith and S. Y. Steen, “A Prototype
Crossword Compiler”, The Computer
Journal, Vol. 24, No. 2, pp. 107-111,
1981.

[6] H. Berghel, “Crossword Compilation with
Horn Clauses”, The Computer Journal,
Vol. 30, No. 2, pp. 183-188, 1987.

[71 H. Berghel and C. Yi, “Crossword
Compiler-Compilation”, 7The Computer
Journal, Vol. 32, No. 3, pp. 276-280,
1989.

[8] J. M. Wilson, “Crossword Compilation
Using Integer Programming”, The
Computer Journal, Vol. 32, No. 3, pp.
273-275, 1989.

[9] M. L. Ginsberg er al., “Search Lessons
Learned from Crossword Puzzles”,
Proceedings of AAAI 90, 1990.

[10]S. C. Jensen, “Design and Implementation
of Crossword Compilation Programs
Using Sequential Approaches”, M. S.
Thesis, Odense University, Denmark,
1997.

[11]G. H. Harris, “Generation of Solution Sets
for Unconstrained Crossword Puzzles”,
Symposium on Applied Computry, TH037-
9/90/0000/0214 Copyright 1990 IEEE.

[12]1. Berker and C. Say, “A Crossword
Puzzle Generator for Turkish”,
Proceedings of the 8th International
Symposium on Computer and Information
Sciences, 1993.

[13]Z. Barutguoglu, “Automated Generation
of Unconstrained Crossword Puzzles and
an Estimate of Their Solution Space”,
Proceedings of the 12" International
Symposium on Computer and Information
Sciences, 1997.

[14]E. Tsang, Foundations of Constraint
Satisfaction, Academic Press, 1993.

[15]]. Hopfield and D. W. Tank, “Neural
Computation of Decisions in Optimization
Problems™, Biological Cybernetics, No.
52, pp. 141-152, 1985.

[16]G. Tagliarini and E. Page, “Solving
Constraint Satisfaction Problems with
Neural Networks”, Proceedings of the
International Conference on Neural
Networks, San Diego, CA, 1987, Vol. 3,
pp- 741-747.

[171H. Adorf and M. Johnston, “A Discrete
Stochastic Neural Network Algorithm for
Constraint Satisfaction Problems”,
Proceedings of the International Joint
Conference on Neural Networks, San
Diego, CA, 1990, Vol. 3, pp. 917-924.

[18]P. Bourret and C. Gaspin, “A Neural
Based Approach of Constraints
Satisfaction Problems”, Proceedings of
IJCNN92, Baltimore, 1992.

[19]G. E. Hinton, T. J. Sejnowski and D. H.
Ackley, “Boltzmann Machines: Constraint
Satisfaction Machines That Learn”,
Technical Report CMU-CS-84-119,
Carnegie-Mellon University, 1984.

[20]Y. Akiyama et «l, “The Gaussian
Machine: A Stochastic Neural Network
for Solving Assignment Problems”,
Journal of Neural Network Computing,
pp- 43-51, Winter 1991.

[211H. H. Szu and R. Hartley, “Fast Simulated
Annealing”, Physics Letters, pp. 157-162,
1987.

[22]]. Hopfield, “Neural Networks and
Physical Systems with Emergent
Collective Computational Abilities”,
Proceedings of the National Academy of
Sciences US4, No. 79, 1982, pp. 2554-
2558.

[23]1H. Jeong and J. H. Park, “Lower Bounds
of Annealing Schedule for Boltzmann and

Cauchy Machines™, International Joint
Conference on Neural Networks,
Washington, DC, 1989, Vol. 1, pp. 581-
586.

[24]H. H. Szu, “Colored Noise Anncaling
Benchmark by Exhaustive Solutions of
TSP, International Joint Conference on
Neural Networks, Washington, DC, 1990,
Vol. 1, pp. 317-320.

[25]A. Likas and A. Stafylopatis, “Group
Updates and Multiscaling: An Efficient
Neural Network Approach to
Combinatorial ~ Optimization”, [EFE
Transactions on Systems, Man and
Cybernetics, 1996.

[206]A. Likas, G. Papageorgiou and A.
Stafylopatis, “A Connectionist Approach
for Solving Large Constraint Satisfaction
Problems™, Applied Intelligence, Vol. 7,
pp. 215-225, 1997.

[27]1C. Gaspin, “Automatic Translation of
Constraints for Solving Optimization
Problems by Neural Networks™,
Proceedings of IJCNN90, San Diego,
1990.

