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ABSTRACT

Motivation: Assigning functions for unknown genes based on diverse

large-scale data is a key task in functional genomics. Previous

work on gene function prediction has addressed this problem using

independent classifiers for each function. However, such an approach

ignores the structure of functional class taxonomies such as the

Gene Ontology. Over a hierarchy of functional classes, a group of

independent classifiers where each one predicts gene membership

to a particular class can produce a hierarchically inconsistent set of

predictions, where for a given gene a specific class may be predicted

positive while its inclusive parent class is predicted negative. Taking

the hierarchical structure into account resolves such inconsistencies,

and provides an opportunity for leveraging all classifiers in the

hierarchy to achieve higher specificity of predictions.

Results: We developed a Bayesian framework for combining multiple

classifiers based on the functional taxonomy constraints. Using

a hierarchy of support vector machine (SVM) classifiers trained

on multiple data types, we combined predictions in our Bayesian

framework to obtain the most probable consistent set of predictions.

Experiments show that over a 105-node subhierarchy of the Gene

Ontology, our Bayesian framework improves predictions for 93 nodes.

As an additional benefit, our method also provides implicit calibration

of SVM margin outputs to probabilities. Using this method, we make

function predictions for multiple proteins, and experimentally confirm

predictions for proteins involved in mitosis.

Supplementary information: Results for the 105 selected GO

classes and predictions for 1059 unknown genes are available at:

http://function.princeton.edu/genesite/

Contact: Olga G. Troyanskaya (ogt@cs.princeton.edu)

1 INTRODUCTION

Discovering biological functions of an organism is a central goal

of functional genomics. Assigning functions for every protein with

traditional experimental techniques could take decades, but the

currently accumulated data from different biological sources make

it possible to generate automated predictions that guide laboratory

experiments and speed up the annotation process. Several studies

have applied machine learning methods to data from biological

experiments to infer functional similarities among genes, or directly

predict function for unknown genes (e.g. Karaoz et al., 2004; Clare

and King, 2003; Lanckriet et al., 2004a). Recently, integration

of different types of biological data in a single model has shown

promising improvements, using such learning methods as support

vector machines and Bayes nets (e.g. Lanckriet et al., 2004b;

Troyanskaya et al., 2003; Chen and Yu, 2004; Pavlidis et al., 2002).

Collections of functional class definitions, such as the Gene

Ontology (GO) (The Gene Ontology Consortium, 2000) and CYGD

of MIPS (Güldener et al., 2005), are organized hierarchically, where

general functions include other more specific functions. However,

existing prediction approaches typically formulate the problem on a

per-function basis, ignoring this structure. A separate independent

classifier is constructed to predict membership for each functional

class. This turns the problem into a convenient form for common

machine learning algorithms, but abstracts away any information

in the functional hierarchy, essentially allowing the classifiers as

a whole to violate the principle that a gene cannot belong to a

child class without also belonging to its parents in the hierarchy.

This structure has not been exploited in any previous work to

improve classification and enforce consistency. Our approach aims

to preserve the hierarchical information to increase predictive

accuracy over all classes.
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Fig. 1. Bayesian hierarchical combining. The y nodes are the binary-

valued hidden nodes representing actual membership to the class, and the

corresponding ŷ nodes are the observed classifier outputs.

2 SYSTEM AND METHODS

We created a system for exploiting the hierarchical structure of a

functional class taxonomy to improve the accuracy of predictions of

individual classifiers.

2.1 Algorithm

This type of general setting where an example can belong to any

number of classes in a hierarchy is called multi-label hierarchical

classification in the machine learning field, though previous work

is rather sparse, and available algorithms such as Cesa-Bianchi

et al. (2004) focus on preventing inconsistent predictions by not

consulting child classifiers at all if a parent predicts a gene as

negative. Such a scheme does ensure consistency by design, but

higher-level classifiers get little or no leverage despite the high

impact of their errors on lower-level nodes. Our Bayesian method

addresses this issue by allowing all levels of classifiers to be
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influenced by one another. This is especially important in the

biological setting, where most classes of interest lie at the leaf nodes

in the hierarchy.

Our approach initially allows inconsistencies to occur, and then

exploits them. We start with independently trained classifiers

for each class as before, and design a Bayesian hierarchical

combination scheme to allow collaborative error-correction over

all nodes. The possibly inconsistent set of predictions obtained

from the independent classifiers is used to find the most

probable set of consistent labels. Results from our computational

experiments demonstrate the accuracy improvements of hierarchical

combination.

We will use yi to denote the binary label of membership to

function class i, and ŷi to denote the classifier output for that

class. Classifier outputs can be as simple as binary predictions,

or real-valued confidence measures including (but not limited

to) probabilities. Thresholding of these outputs are handled

automatically.

After presenting an unknown example to all classifiers, we obtain

a set of (possibly inconsistent) ŷ values, and we wish to find the most

probable set of (consistent) y values that may have led to them. That

is, for N nodes we need to find the y1 . . . yN that maximizes

P (y1 . . . yN |ŷ1 . . . ŷN) =
P (ŷ1 . . . ŷN |y1 . . . yN)P (y1 . . . yN)

Z
(1)

where Z is a constant normalization factor.

We propose a Bayesian network structure for this problem, of

which Figure 1 shows an example. The y nodes are conditioned

on their child classes1, and the ŷ nodes are conditioned on the

label y of the class. The edges among the y nodes serve to

impose the hierarchical consistency among the labels. By setting the

appropriate entry in its conditional probability table in the Bayes net,

we can trivially ensure that a label is 1 when any one of its children

is 1. The edges from y to ŷ, on the other hand, reflect a simplifying

observation: for a given example, a classifier output ŷi is a random

variable independent of all other classifier outputs ŷj and labels yj

(i 6= j) given its true label yi. This allows us to simplify Equation 1:

P (ŷ1 . . . ŷN |y1 . . . yN) =
N

Y

i=1

P (ŷi|yi) (2)

and from the y edges,

P (y1 . . . yN) =

N
Y

i=1

P (yi|ch(yi)) (3)

where P (yi|ch(yi)), the label probabilities conditioned on child

labels, can be inferred from the training labels by counting.

P (ŷi|yi) can also be estimated during training by validation,

modeling the distributions of ŷi outputs over positive and negative

validation examples. For real-valued classifier outputs, one way to

do this is to assume a parametric model (e.g. Gaussian) for each

of the distributions P (ŷi|yi = 1) and P (ŷi|yi = 0), and estimate

1 Reversing these arcs and conditioning y nodes on their parents also results

in a Bayes net, but conditioning on children makes more causal sense to us,

and in our experiments we found the latter to produce slightly better results.

model parameters (e.g. mean and variance) on held-out examples.

For binary classifier outputs, these distributions would be binomial,

trivially estimated by the confusion matrices from validation.

Now we can use any standard exact inference or simulation

algorithm to find the most likely configuration of consistent hidden

y labels for the given ŷ outputs. Or, if we wish to retain

individual membership probabilities instead of one most likely

discrete assignment, we can calculate P (yi|ŷ1 . . . ŷN ) for every

node separately.

2.2 Training Individual Classifiers

Our training process starts by training the individual classifiers.

In this phase, independent classifiers are conventionally trained

for each class, with no regard to the hierarchy. Each classifier

is responsible for predicting membership to a particular class by

means of a binary or real-valued output. For the classifiers in our

experiments, we used support vector machines without thresholding

their outputs, as will be described in more detail.

Since validation results will be needed for the Bayes net, some

training examples have to be held out. However, for most classes in

our data positive examples are too rare to hold out completely, so

we use bootstrapping (random sampling with replacement) to create

10 bootstrap samples from the full training data for a class, each of

which excludes a ratio of approximately 0.368 of all examples, and

may contain multiple copies of the rest (Efron and Tibshirani, 1993).

Each bootstrap sample is used to train a separate classifier that

is evaluated on the examples that were excluded from its training

sample. This yields 10 classifiers for a class. For a previously unseen

example, each classifier of the class will be evaluated, and the

median of their outputs will be taken as the combined output. This

corresponds to taking a majority vote with a given threshold, and

is known as bagging (bootstrap aggregation) (Breiman, 1996). For

evaluating training examples for validation, only those classifiers

which were not trained on that example will be included in the

aggregation.

A widely used alternative to bootstrapping is k-fold cross-

validation. In this setting we prefer bootstrapping because to

achieve a comparable held-out example ratio to bootstrapping,

cross-validation would be limited to k = 3, notably reducing the

benefit of aggregation.

We use aggregation for the final classifier instead of training a new

one on all training data, because in the latter case the final classifier

could have an unexpectedly high error that would be impossible to

detect. On the other hand, an aggregate classifier is expected to

improve the accuracy of individual classifiers, which have known

accuracies from validation.

2.3 Constructing the Bayes Net

The next step is to construct the Bayes net to combine outputs.

First, we assume the aggregate classifier outputs to have Gaussian

distributions for positive and negative examples. Using the

validation-phase predictions from held-out examples (or rather,

held-out bootstrap-classifiers for each example), we estimate means

and variances for each class. Figure 2 contains a typical plot of

outputs for a GO node, showing that our assumption of Gaussian

distributions is not unreasonable. These estimated distributions

define the conditional probabilities P (ŷi|yi = 0) and P (ŷi|yi = 1)
in our Bayes net.
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Fig. 2. Modeling classifier outputs (GO:0007059 "chromosome

segregation"). The histograms indicate the distribution of

unthresholded median SVM outputs for positive and negative validation

examples. (The y-axes have different scales.)

3 IMPLEMENTATION

3.1 Support Vector Machines

The support vector machine (SVM) classifier is a state-of-the-

art machine learning method that separates positive and negative

examples with a linear decision boundary (i.e. a hyperplane) in a

feature space, and aims to achieve better generalization through a

principle termed maximizing the margin (Burges, 1998).

For our individual classifiers, we trained the SVMs using the

SVMlight software (Joachims, 1999).

We experimented with linear SVMs as well as RBF-kernel SVMs

using various γ, over a wide range of capacity (C) values. The

functional genomics data we used turned out to be linearly separable

in the input space, and cross-validated results showed that generally

hard-margin (C = ∞) linear SVMs performed slightly better

than soft-margin linear or RBF-kernel SVMs, the latter severely

overfitting at times. This is not very surprising, considering the

large number of input features compared to the relatively small

number of training examples. To consider the versatility of our

hierarchical learning method, we also trained Logistic Regression

classifiers which lack the maximum-margin properties of SVMs.

Because Logistic Regression classifiers show worse generalization

than SVMs as expected, we focus on hard-margin linear SVMs as

the base classifiers in this study.

For our purposes of Bayesian combination, we use unthresholded

SVM outputs, i.e., all further mentions of SVM predictions are

unbounded real values. The calibration of these outputs to actual

probabilities is done implicitly by the output distribution modeling

procedure explained below.

3.2 Data Sources and Processing

3.2.1 Training Labels Our training labels come from the

biological process hierarchy of the Gene Ontology (GO). A

positive example for a class denotes a gene that is annotated to that

node or one of its descendant nodes in GO. This upward propagation

of annotations is natural because of the hierarchical nature of GO,

and it also has the consequence that all training label configurations

are hierarchically consistent by definition.

Of the 1000 nodes in the Gene Ontology which have direct

annotations for yeast, in consultation with a yeast geneticist, we

chose 105 nodes that have both a reasonable number of annotations

(at least 1 direct and 15 total annotations) and were specific enough

to have some biological significance if a new gene were predicted to

belong there.

Unfortunately, GO annotations are almost exclusively positive2.

This renders the data unsuitable for typical classifiers as is, as there

are few negative examples to separate from the positives. Similarly

to previous work, we use an annotated gene as a negative example

for the nodes it is not annotated to. There is some justification

to this ad hoc introduction of negatives – if a gene is already

known to be annotated to a node, it is less likely to be annotated

to additional nodes. As a slight improvement to this, we also do

not include a node’s positive annotations as negatives in any of its

descendants, reasoning with the same biological intent of making

the assumed set of negatives more specific. Our experiments show

that this additional filtering of introduced negatives provides a small

improvement in accuracy, but more importantly it yields more

unused examples to be evaluated later at the child nodes for new

discoveries.

3.2.2 Interaction Data Pairwise interaction datasets denote the

existence of an interaction between pairs of proteins (gene products)

under certain experimental conditions. The biological premise is

that if two proteins have a certain interaction, their genes might be

more likely to belong to the same functional class.

In our experiments we use the GRID collection of pairwise

interaction datasets (Breitkreutz et al., 2003). Our snapshot

contains 8 types of interactions (Affinity Precipitation, Two Hybrid,

Synthetic Lethality, Affinity Chromatography, Synthetic Rescue,

Dosage Lethality, Purified Complex, Biochemical Assay). Each

of these datasets can be viewed as a square binary matrix whose

non-zero elements denote an interaction between the row gene and

the column gene. To transform this second-order data type into the

form expected by typical machine learning algorithms, we treat each

column of a matrix as a feature, treating rows as the examples’

feature vectors. For the 9 matrices (and their transposes since they

are not necessarily symmetric), we concatenate the feature vectors

obtained as such, and obtain 88200 features for 4900 genes.

3.2.3 Microarrays Microarray datasets are real-valued matrices

measuring gene expression levels under different experimental

conditions. We use gene expression microarray data from the

Stanford Microarray Database (SMD) containing results from

several publications (Spellman et al., 1998; Gasch et al., 2000, 2001;

Sudarsanam et al., 2000; Yoshimoto et al., 2002; Chu et al., 1998;

Shakoury-Elizeh et al., 2003; Ogawa et al., 2000), providing a total

of 342 real-valued features for 5737 common genes. 4524 of these

genes are among the 4900 genes in GRID, and we fix this set of

4524 genes to be used in our experiments.

Microarray entries typically include missing values due to

experimental imperfections. We estimate such entries using the

2 The GO does include occasional negative annotations, but these are the

very few cases found to be particularly surprising for biologists.
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widely accepted KNNimpute algorithm (Troyanskaya et al., 2001)

with k = 15.

3.2.4 Colocalization Data Colocalization datasets provide in-

formation about where the gene products are found in the cell. If

two proteins are found in the same locales in the cell, their genes

may be more likely to belong to the same class.

We combine two colocalization datasets. One is the curated

localization data from the molecular complex hierarchy of the

Gene Ontology, of which we use 148 terms, providing data for a

total of 1043 genes. The other is an adaptation of the O’Shea data

(Huh et al., 2003) used in a previous function study, and contains

2902 genes (Jansen et al., 2003).

We treat each locale of each dataset as a binary feature where 1

denotes membership. For genes not included in these datasets, we

use zero values.

3.2.5 Transcription Factor Binding Sites Transcription factor

binding sites data are another grouping of genes based on a common

attribute. If two genes are known to have a common transcription

factor binding site, they are more likely to belong to the same

biological process, since they are being transcribed together.

We use the PROSPECT dataset (Fujibuchi et al., 2001), which

has 27 experimentally identified sites for 146 genes. As before, we

treat the presence of absence of each site as a binary feature and use

zeros for genes not included.

3.2.6 Processing of Input Data We integrate all data into a

single feature set by concatenating all feature vectors for a gene.

Namely, the input features for an example consist of that gene’s

interaction flags with all genes for all interaction experiments, flags

for membership to each colocalization locale and possession of each

transcription factor binding site, and the log-ratio values for each

slide in each microarray experiment. Real-valued features (currently

only microarray data) are z-score normalized to zero-mean and

unit-variance.

Such direct combination of all data into a single dataset was

termed early integration in Pavlidis et al. (2002), and used with

feature scaling, was found to be the best-performing data integration

policy for most of their selected classes. Although we do not apply

explicit feature scaling in our experiments, our linear SVMs are

essentially feature scaling operations themselves, since an inner

product with the separating hyperplane normal vector is a particular

linear weighting of features.

Most interaction datasets being rather sparse, most of the columns

in the resulting dataset of 88, 721 dimensions contain less than two

non-zero entries. Removing all such uninformative columns leaves

5930 features for the 3465 annotated genes.

Upon training of our linear SVMs, we can assess how much each

data type contributes to classification decisions based on the linear

coefficients for decision boundaries. We examined the ratio of each

data type’s absolute-valued weights to the total (including bias).

Although the ratios vary widely for different nodes, on average the

interaction data contribute 60%, microarrays 36%, colocalization

4% and transcription factor binding sites less than 1% of the

weights. The number of interaction features is disproportionately

larger (88, 200) than microarrays (342), but the interactions data are

very sparse and binary while microarrays are dense and real-valued.

Thus, the substantial contribution of microarrays is not surprising,

and for several classes (27) microarray data contribute the most to

the weights.

4 RESULTS

In this work, we develop a Bayesian framework which incorporates

the class hierarchy to improve prediction accuracy of independent

classifiers, also solving the problem of hierarchically inconsistent

predictions. Using SVMs trained independently on heterogeneous

Saccharomyces cerevisiae data, we evaluate our method on held-out

annotated genes, and make predictions for unknown genes.

4.1 Prediction Accuracy on Held-out Data

We use the AUC score (area under the ROC curve) as a measure

of the ranking accuracy of the classifiers’ outputs. This measure is

invariant to changes in the actual calibration of outputs as long as

their ordering stays the same, so it eliminates the issue of unbounded

SVM outputs and Bayes net probabilities having different range

and calibration. For each node, we compare the AUC scores of the

aggregate SVM output and the marginal probability from the Bayes

net.

Our approach of hierarchical Bayesian correction increased AUC

for 93 of the 105 nodes. Our GO subhierarchy is shown in

Figure 3, colored by changes in AUC score where darker shades

of blue indicate larger increases, and darker shades of red indicate

larger decreases. The largest improvements were observed at

deeper nodes. The Bayesian combination has substantially increased

accuracy for the vast majority of functional categories, as evident

from the comparison of AUC scores before and after hierarchical

improvement (Figure 4).

Figure 5 compares a set of raw SVM (aggregate) predictions to the

corresponding Bayesian marginal predictions for a particular held-

out gene. Using the default zero threshold for SVMs and 0.5 for

the Bayes net probabilities, the Bayes net corrects the inconsistency

in the SVM predictions, and also correctly changes predictions for

lower-level nodes as well.

The average change in AUC over all nodes is +0.033 (a ratio of

4% improvement over the old AUC), with a minimum of −0.031
and maximum of +0.346 (63% improvement over the old AUC).

Note that this comparison of absolute changes in AUC does not

take into account that for fairly accurate classifiers the room for

improvement is small. One way to correct this is to observe the

proportion of decrease in the area over the ROC curve (1−AUC),

which is literally the room for improvement. On average, the new

area over the ROC curve is 21% less than the old one, reflecting

substantial improvements for the previously weakly performing

nodes.

The AUC deterioration in some nodes after Bayesian combination

might be due to poor output modeling by Gaussians, or correlated

errors (mutual misleading) among nodes. In any case, such nodes

are identified in these cross-validation results before actual use, so

for those nodes SVM predictions can simply be used unmodified. In

that case, we get an average AUC change of +0.035.

4.2 Predictions for New Annotations

To maintain consistency of our experiments over time, we used a

snapshot of the Gene Ontology annotations taken at the beginning

of this work in April 2004. Since then, as of July 2005, 88
previously unannotated yeast genes for which we have input data

have been annotated in our selected hierarchy of 105 nodes (or their
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Fig. 4. Scatter-plot of AUCs after vs. before Bayesian combination. Points

above the diagonal correspond to accuracy improvements by our method.

descendants), yielding 346 new gene-to-node pairs. For these 88
genes, we examined predictions using our old snapshot data before

and after Bayesian correction.

Independent SVM classifiers for these genes achieve 32%
precision (TP/(TP+FP)) and 7% sensitivity (TP/(TP+FN)). Using

Bayesian correction improves the sensitivity three times (21%) at

comparable precision (31%). Furthermore, at the same sensitivity

(7%), the Bayes net produces 51% precision. As the Bayes net gives

a confidence-based output, by thresholding at the desired level our

method can be used to leverage sensitivity or precision or both.

Although some SVM predictions are incorrectly changed from

positive to negative due to noisy data, many more predictions are

correctly modified, and even with a high-precision threshold of 0.99
our Bayesian scheme yields more true positives than independent

SVMs. Incidentally, independent SVMs cannot find any of the direct

annotations (which are of particular interest for being the most

specific) for the 88 genes, while the Bayes-corrected system is able

to correctly predict some, even for the higher thresholds.

4.3 Predictions of Novel Proteins Involved in Mitosis

Our system makes predictions of function for multiple unannotated

genes. Such predictions can be used to guide experimental

verification of these functions. To assess the system’s ability to

make biologically relevant predictions that can be readily tested

experimentally, we have examined in detail a small group of

unknown genes with function predictions related to mitosis. All of

these predictions were introduced by our hierarchical system; i.e.,

they were not predicted as positive by the individual classifiers prior

to hierarchical combination.

YMR144W is an unknown protein that our system predicted to

be involved in mitotic chromosome segregation. Indeed, when we

examine a Saccharomyces cerevisiae strain lacking this protein,

the cells show significant increase in chromosome segregation

defects as compared to wild-type cells (F-score = 6.6 × 10−12),

with multiple large budded cells with nuclei in the bud neck.

This phenotype is consistent with that of ctf4∆ mutant – a

strain lacking a known chromosome segregation gene (Miles and

Formosa, 1992).

For the YOR315W gene, we make a novel prediction of mitotic

spindle assembly. Yeast cells lacking this gene cannot properly

separate their DNA during cell division – DNA is localized

in elongated clumps along the spindle, mostly in the mother

cells. These nuclear defects in large budded cells are significant

with F-score of 2.8 × 10−12. Furthermore, using anti-α-tubulin

antibody, we demonstrate that YOR315W∆ cells have misaligned

spindles during cell division, supporting our specific predictions of

YOR315W function (Figure 6).

YMR299C was predicted by our system to be involved in mitotic

cell cycle. A recent study by Lee et al. (2005) has shown that this

gene encodes a protein that is part of a dynein pathway that plays

a critical role in mitosis, supporting our prediction. Another protein

YOR315Wwas assigned by our system to a more general term cell

cycle, and this prediction has some support (though not proof)

from a study by Zhang et al. (2005) who also hypothesized its

involvement in cell cycle by an independent method.

While these verifications do not prove that all novel predictions

made by our system are accurate, they demonstrate that these

predictions can be readily tested by directed experiments. Until

experimental validation, these are predictions, not true functional
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(a) Independent SVMs
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(b) Bayesian correction

Fig. 5. (a) SVM outputs (gray if above 0) and (b) marginal probabilities from Bayes net (gray if above 0.5) for held-out gene YNL261W. SVM outputs have

an inconsistency at the GO:0007049 "cell cycle" node which is corrected by the Bayes net. Also, the Bayes net can change predictions for seemingly

consistent nodes as well, including leaf nodes. For this gene, all Bayesian predictions thresholded at p = 0.5 are correct. YNL261W is a subunit of the origin

recognition complex that binds to replication origin and directs DNA replication (Bell, 2002).
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Anti-α-tubulin antibody DAPI
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Fig. 6. Experimental validation of predictions. (a) Yeast cells were stained, and photographed using differential inference contrast imaging or DAPI staining.

Populations of cells lacking either YMR144W or YOR315W have a significantly higher number of large-budded cells with nuclear defects. (b) Cells were fixed

and their spindles were visualized with an anti-α-tubulin antibody. Large-budded cells lacking YOR315W exhibit frequent misaligned spindles and nuclear

defects.
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assignments. However, availability of such predictions can

greatly accelerate the assignment of such annotations by driving

experimentation.

5 DISCUSSION

Our proposed method of correcting inconsistent predictions in a

multi-label class hierarchy was shown to improve performance for

the majority of functions. In addition to eliminating inconsistencies,

our Bayesian scheme also implicitly transforms unbounded real-

valued classifier outputs into marginal probabilities and provides

better calibration. Although our base classifiers of choice were

SVMs, our system is a generic hierarchical ensemble method for

leveraging accuracy that can work with any type of classifier without

modification. Thus, given existing trained classifiers (e.g. from

previous research on GO) our method can be directly applied to

improve performance, needing only cross-validation results for

output distribution modeling which are most often already available.

Prediction over the Gene Ontology is characterized by the virtual

lack of negative examples. One obvious path to explore as future

work is applying density estimation algorithms, such as Maximum

Entropy, which work with only positive examples to estimate a

probability density function over the input space. Unfortunately the

lack of a real gold standard that includes negatives will still prevent

comparing such an algorithm to our current approach on an equal

basis.

Our approach in this paper is based on combining pre-trained

classifiers. Constructing a system that trains the individual base

classifiers in cooperation with each other and the combination

mechanism might be able to make better use of the data, providing

another prospect for further improvement.
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