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Abstract

This paper studies boosting algorithms that makegle passover a set of base
classifiers.

We first analyze a one-pass algorithm in the setting of bogstith diverse base
classifiers. Our guarantee is the same as the best provedydroasting algo-
rithm, but our one-pass algorithm is much faster than prevapproaches.

We next exhibit a random source of examples for which a “piclariant of Ad-
aBoost that skips poor base classifiers can outperform éimelatd AdaBoost al-
gorithm, which uses every base classifier, by an expondatitdr.

Experiments with Reuters and synthetic data show that ass{poosting can sub-
stantially improve on the accuracy of Naive Bayes, and tlia¢ypboosting can
sometimes lead to a further improvement in accuracy.

1 Introduction

Boosting algorithms use simple “base classifiers” to buitttenrcomplex, but more accurate, aggre-
gate classifiers. The aggregate classifier typically makedass predictions using a weighted vote
over the predictions made by the base classifiers, whichsarally chosen one at a time in rounds.

When boosting is applied in practice, the base classifieaat eound is usually optimized: typically,
each example is assigned a weight that depends on how wehéridled by the previously chosen
base classifiers, and the new base classifier is chosen tominénihe weighted training error. But
sometimes this is not feasible; there may be a huge numbeas# blassifiers with insufficient
apparent structure among them to avoid simply trying alheft out to find out which is best. For
example, there may be a base classifier for each wakehoer. (Note that, due to named entities, the
number of “words” in some analyses can far exceed the nunflveomls in any natural language.)
In such situations, optimizing at each round may be prokiddit expensive.

The analysis of AdaBoost, however, suggests that thereddo@lhope in such cases. Recall
that if AdaBoost is run with a sequence of base classifigrs. ., b,, that achieve weighted er-
ror % — Yiyeen, % — 7, then the training error of AdaBoost’s final output hypothés at most
exp(—2 Y.}, 7#). One could imagine applying AdaBoost without performingimtation: (a)
fixing an orderby, ..., b, of the base classifiers without looking at the data, (b) cattimgito use
base classifieb; in round¢, and (c) setting the weight with which votes as a function of its
weighted training error using AdaBoost. (In a one-passatenit seems sensible to use AdaBoost
since, as indicated by the above bound, it can capitalizeherativantage over random guessing
of every hypothesis.) The resulting algorithm uses esainthe same computational resources as
Naive Bayes [2, 7], but benefits from taking some account efdépendence among base classi-
fiers. Thus motivated, in this paper we study the performanckfferent boosting algorithms in a
one-pass setting.

Contributions. We begin by providing theoretical support for one-pass tingsising the “diverse
base classifiers” framework previously studied in [1, 6]tHis scenario there arebase classifiers.
For an unknown subsét of k£ of the base classifiers, the events that the classifiatsane correct
on a random item are mutually independent. This formalizesibtion that thesk base classifiers



are not redundant. Each of thekeclassifiers is assumed to have er@r— ~ under the initial
distribution, and no assumption is made about the otherk base classifiers. In [1] it is shown
that if Boost-by-Majority is applied with a weak learner tid@es optimization (i.e. always uses the
“best” of then candidate base classifiers at eaclogk) stages of boosting), the error rate of the
combined hypothesis with respect to the underlying distidm is (roughly) at mostxp(—Q(v2k)).

In Section 2 we show that a one-pass variant of Boost-by-Ntgjachieves a similar bound with a
single pass through thebase classifiers, reducing the computation time requirexhi}( k) factor.

We next show in Section 3 that when running AdaBoost usingoass, it can sometimes be advan-
tageous tabstainfrom using base classifiers that are too weak. Intuitivélig is because using
many weak base classifiers early on can cause the boostimtlatg to reweight the data in a way
that obscures the value of a strong base classifier that clatees (Note that the quadratic depen-
dence ony, in the exponent of thexp(—2 "', 72) means that one good base classifier is more
valuable than many poor ones.) In a bit more detail, suppusebase classifiers are considered
in the ordef, ..., b,, where each ofy, ..., b,_1 has a “small” advantage over random guessing
under the initial distributiorD andb,, has a “large” advantage undBr Usingby, . .., b, for the
firstn — 1 stages of AdaBoost can cause the distributibasDs, . . . to change from the initiaD;

in such a way that wheb, is finally considered, its advantage undgy is markedly smaller than
its advantage undép,, causing AdaBoost to assi@p a small voting weight. In contrast, a “picky”
version of AdaBoost would pass up the opportunity touse. ., b,,—1 (since their advantages are
too small) and thus be able to reap the full benefit of ugingnder distributiorD, (since wherb,,

is finally considered the distributidR is still Dy, since no earlier base classifiers have been used).

Finally, Section 4 gives experimental results on Reutetlssgnthetic data. These show that one-pass
boosting can lead to substantial improvement in accuraey Baive Bayes while using a similar
amount of computation, and that picky one-pass boostingoaretimes further improve accuracy.

2 Faster learning with diverse base classifiers

We consider the framework of boosting in the presence ofrsé/base classifiers studied in [1].

Definition 1 (Diverse~-good) Let D be a distribution overX x {—1,1}. We say that a sef of
classifiers igdiverse andy-good with respect t® if (i) each classifier inG has advantage at least
~ (i.e., error at mos% — ) with respect tdD, and (ii) the events that the classifiers@hare correct
are mutually independent undér.

We will analyze thePicky-One-Pass Boost-by-MajorifPOPBM) algorithm, which we define as
follows. It uses three parametets,T” ande.

1. Choose arandom orderihg, ..., b,, of the base classifiers i, and set; = 1.
2. For as many roundsasi; < min{T, n}:

(a) DefineD; as follows: for each example;, y),

i. Letr,(z,y) be the the number of previously chosen base classfiigrs ., hi—1
that are correct o, y);

H —l—= Z*th. T ¢ Tl T,

i. Let w(z,y) = (L§Tfit(i,y))(% + o[)bJ @)l O[)(Q] t=14re(@y) ot
Zy = By y)~p (wi(z,y)), and letD, (v, y) = “E4/PE1),

(b) CompareZ; toe/T, and

i. If Z, > ¢/T, thentryb;,, b;,+1, ... until you encounter a hypothediswith advan-
tage at leastv with respect taD, (and if you run out of base classifiers before this
happens, then go to step 3). $eto beb; (i.e. returnb; to the boosting algorithm)
and set,; to j + 1 (i.e. the index of the next base classifier in the list).

ii. If Z, < ¢/T,then set; to be the constant-1 hypothesis (i.e. return this constant
hypothesis to the boosting algorithm) and et = ;.

3. Ift < T+1 (i.e. the algorithm ran out of base classifiers before selg@t of them), abort.
Otherwise, output the final classifigfz) = Maj(hi(z), ..., hr(x)).



The idea behind step 2.b.ii is that4f is small, then Lemma 4 will show that it doesn’t much matter
how good this weak hypothesis is, so we simply use a consyguthesis.

To simplify the exposition, we have assumed that POPBM cattbxdetermine quantities such
as Z; and the accuracies of the weak hypotheses. This would povebthe case ifD were
concentrated on a moderate number of examples, e.g. undwema training set. With slight
complications, a similar analysis can be performed wheselggiantities must be estimated.

The following lemma from [1] shows that if the filtered distution is not too different from the
original distribution, then there is a good weak hypotheslgtive to the original distribution.

Lemma 2 ([1]) Suppose a s&t of classifiers of siz& is diverse andy-good with respect t®. For
any probability distribution?) such thatQ(z,y) < %eVQ’“/QD(x,y) forall (z,y) € X x {-1,1},
there is ag € G such that

Pr, ynq9(@) =y) > 5 + 7. 1)

The following simple extension of Lemma 2 shows that, givestranger constraint on the filtered
distribution, there arenanygood weak hypotheses available.

Lemma 3 Suppose a sét of classifiers of sizé is diverse andy-good with respect t®. Fix any
¢ < k. For any probability distribution® such that

Qla.y) < 3 Diay) @
forall (x,y) € X x {—1,1}, there are at leaskt — ¢ + 1 memberg of G such that (1) holds.

Proof: Fix any distribution@ satisfying (2). Letgy, ..., g¢ be an arbitrary collection of elements
of G. Since the{q, ..., g9/} and @ satisfy the requirements of Lemma 2 withset to/, one of
g1, - - ., ge must satisfy (1); sanyset of¢ elements drawn frort” contains an element that satisfies
(). This yields the lemmal

We will use another lemma, implicit in Freund’s analysis, [®rmulated as stated here in [1]. It
formalizes two ideas: (@) if the weak learners perform whkn so will the strong learner; and (b)
the performance of the weak learner is not important in redodwhich Z; is small.

Lemma 4 Suppose that Boost-by-Majority is run with parameterand 7', and generates clas-

sifiershy, ..., by for which Dy (hy(z) = y) = 2+ 7, ..., Dr(hr(z) = y) = 1 + yr. Then,

for a random element db, a majority vote overhy, ..., hr is incorrect with probability at most
—202T T

€ + 2 (@ =) 2.

Now we give our analysis.

Theorem 5 Suppose the séf of base classifiers used by POPBM contains a sus#tk elements
that is diverse and-good with respect to the initial distributioR, wherey is a constant (say/4).
Then there is a setting of the parameters of POPBM so that, pvitbability 1 — 2-(%) it outputs
a classifier with accuracyxp(—Q(y2k)) with respect to the original distributio®.

Proof: We prove that = /4, T = k/64, ande = %6‘72’“/16 is a setting of parameters as
required. We will establish the following claim:

Claim 6 For the above parameter settings we h&gPOPBM aborts in Step|3= 2—(*),

Suppose for now that the claim holds, so that with high prdisa®OPBM outputs a classifier.

In case it does, lef be this output. Then since POPBM runs for a fiilrounds, we may apply

Lemma 4 which bounds the error rate of the Boost-by-Majdiitsil classifier. The lemma gives us
thatD(f(x) # y) is at most

T
T LS a— )z = e TTRL Y (a—wZi+ Y (-7
t=1 12 <% tZi >+
< 00k T(e/T)+0 = e UR), (Theorem 5)0



The final inequality holds since — v, < 0if Z; > ¢/T anda — v, < 1if Z; < ¢/T.

Proof of Claim 6: In order for POPBM to abort, it must be the case that asithase classifiers in
G are encountered in sequence as the algorithm proceedgthiou . . , h,,, more thar63k /64 of

them are skipped in Step 2.b.i. We show this occurs with gribibaat most2—(*%).

For eachj € {1,...,k}, let X, be an indicator variable for the event that tfta member ofG

in the orderingby, ..., b, is encountered during the boosting process and skippedfoarehch
e {l,.. ,k} letS, = mim{(Zﬁz1 X;) — (3/4)L,k/8}. We claim thatS1, ..., Sy /s is a super-
martingale, i.e. thaE[S;11]S1,...,5] < Sy forall ¢ < k/8. If S, = k/8 or if the boosting
process has terminated by tft member of7, this is obvious. Suppose thé < k/8 and that the
algorithm has not terminated yet. Lsdbe the round of boosting in which tligh member of is en-
countered. The value,(z, y) can be interpreted as a probability, and so we haveuth@at, y) < 1.

Consequently, we have that

D T
Di(z,y) < 7(17,7;) <D(z,y) - — =D(z,y) - L g*k/16 < D(z,y) - T erk/s,
Zt € 24 3

Now Lemma 3 implies that at least half of the classifiergsimave advantage at leastw.r.t. D;.
Sincel < k/4, it follows that at least; /4 of the remaining (at most) classifiers inG that have not
yet been seen have advantage at leastr.t. D;. Since the base classifiers were ordered randomly,
any order over the remaining hypotheses is equally likelglso also is any order over the remaining
hypotheses frortr. Thus, the probability that the next memberdfo be encountered has advantage
at leastv is at leastl /4, so the probability that it is skipped is at m@gt. This completes the proof
thatSy, ..., Sy /s is a supermartingale.

Since[Sy — S,—1] < 1, Azuma’s inequality for supermartingales implies tRat(S;, s > k/64) <
e~%) This means that the probability that at leag64 good elements weneot skipped is at least
1 — e~ 9% which completes the prodil

3 For one-pass boosting, PickyAdaBoost can outperform Adaibst

AdaBoost is the most popular boosting algorithm. It is md&troapplied in conjunction with a

weak learner that performs optimization, but it can be usiél any weak learner. The analysis
of AdaBoost might lead to the hope that it can profitably beliaddor one-pass boosting. In this
section, we compare AdaBoost and its picky variant on afi@ali source especially designed to
illustrate why the picky variant may be needed.

AdaBoost. We briefly recall some basic facts about AdaBoost (see Figurd we run AdaBoost
for T' stages with weak hypothesks, . . ., hr, it constructs a final hypothesis

H(x) = sen(f(z)) where f(z)= f:athxx) @3)

withay = L 5 In 1=« Heree, = Pr,, V)~D, [he(x) # Y] whereDt is thet-th distribution constructed
by the algor|thm (the first distributio®; is justD, the initial distribution). We writey, to denote

— ¢, theadvantageof the ¢-th weak hypothesis under distributi@. Freund and Schapire [5]
proved that if AdaBoost is run with an initial distributidn over a set of labeled examples, then the

error rate of the final combined classifiris at mosexp(—2 Z;il v2) underD:
T
Pr(,~plH(z) #y] < exp <—2 Z:l'yf> . (4)

(We note that AdaBoost is usually described in the case ichiis uniform over a training set, but
the algorithm and most of its analyses, including (4), gotigh in the greater generality presented
here. The fact that the definition af depends indirectly on an expectation evaluated according t
D makes the case in whidh is uniform over a sample most directly relevant to practiéewever,

it is easiest to describe our construction using this monegd formulation of AdaBoost.)

PickyAdaBoost. Now we define a “picky” version of AdaBoost, which we call Ri¢idaBoost.
The PickyAdaBoost algorithm is initialized with a paramete> 0. Given a valuey, the Pick-
yAdaBoost algorithm works like AdaBoost but with the follmg difference. Suppose that Pick-
yAdaBoost is performing roundof boosting, the current distribution is sorfg, and the current



Given a sourc® of random examples.
e Initialize D; = D.
e Foreach roundfrom1toT":

— Presen®; to a weak learner, and receive base classifier
— Calculate error; = Pr, ,)p, [h:(x) # y] and sety, = 3 In <=5

— Update the distribution: Define Dy, 1 by settlng Dy (z,y)
exp(—auyhy(x))Dy(z,y) and normalizingD; ., to get the probab|I|ty dlstr|bu-
tion Dt+1 = D1/§+1/Zt+1;

¢ Return the final classification ruld (z) = sgn (>, ath¢(x)) .

Figure 1: Pseudo-code for AdaBoost (from [4]).

base classifieh,; being considered has advantagenderD’, where|vy| < 7. If this is the case
then PickyAdaBoost abstains in that round and does notdeclu into the combined hypothesis it
is constructing. (Note that consequently the distribufmrthe next round of boosting will also be
D’.) On the other hand, if the current base classifier has adgentwhere|y| > 7, then PickyAd-
aBoost proceeds to use the weak hypothesis just like AddBiomsit addso, b, to the functionf
described in (3) and adjust¥ to obtain the next distribution.

Note that we only require thenagnitudeof the advantage to be at leagst Whether a given base
classifier is used, or its negation is used, the effect tHatston the output of AdaBoost is the same
(briefly, becausén % = —In $=). Consequently, the appropriate notion of a “picky” vensod
AdaBoost is to require the magnitude of the advantage torge la

3.1 The construction

We consider a sequence of+ 1 base classifiers,, . .., b,, b,1+1. For simplicity we suppose that
the domainX is {—1,1}"*! and that the value of theth base classifier on an instance {0, 1}"
is simplyb;(z) = ;.

Now we define the distributio® overX x {—1,1}. A draw of(z, y) is obtained fronD as follows:
the bity is chosen uniformly fron{+1, —1}. Each bitx4, . . ., z,, is chosen independently to equal
y with probability% + v, and the bitz,,, is chosen to equal if there exists ani, 1 < i < n, for
whichz; = y; if ; = —yforall 1 < i < nthenz,, is setto—y.

3.2 Base classifiersin ordebs, ..., by, bnt1

Throughout Section 3.2 we will only conS|der parameterirggst of v, 7, n for whichy < 7 <
2 — (3 —)™. Note that the inequality < 1 — (3 —~)" is equivalenttd — )" < 3 —, which
holds foralln > 2.

PickyAdaBoost. In the case where < 7 < % — (% — )™, it is easy to analyze the error rate of
PickyAdaBoosty) after one pass through the base classifiers in the éider. , b,,,b,11. Since

each oy, ..., b, has advantage exactlyunderD andb,, 1 has advantag§ — (% — 7)™ underD,
PickyAdaBoosty) will abstain in roundd, ..., n and so its final hypothesis is s@n1(-)), which
is the same ak, .. Itis clear thab,,.; is wrong only if each:; # y fori = 1,...,n, which occurs

with probability (3 — ~)". We thus have:

Lemma7 Fory <75 < 1 — (3 — 7)", PickyAdaBoosty) constructs a final hypothesis which has
error rate precisely(% —~)™ underD.

AdaBoost. Now let us analyze the error rate of AdaBoost after one paesitin the base classifiers
inthe ordemy, ..., b,+1. We writeD, to denote the distribution that AdaBoost uses atttiestage
of boosting (sd = D,). Recall thaty, is the advantage @& under distributiorD;.

The following claim is an easy consequence of the fact thadrgthe value ofj, the values of the
base classifiers,, . . . , b,, are all mutually independent:



Claim 8 For eachl <t < n we have that; = ~.

1/24y _ 1 In 142y

It follows that the coefficienta;, ..., «, of by,..., b, are all equal to} In 75— — 3 M5y

The next claim can be straightforwardly proved by inductart:

Claim 9 LetD, denote the distribution constructed by AdaBoost after @ssing the base classi-
fiersby, ..., b,_1 in that order. A draw of z, y) from D, is distributed as follows:

e The bity is uniform random fron{—1, +1};
e Each bitzy, ..., z,_; independently equalgwith probability%, and each bite,., ..., z,
independently equalswith probability 2 + ;

e The bitz, ., is set as described in Section 3.1, g1 = —y ifand only ifz; = - --
Tn = —Y.

Claim 9 immediately gives,, ;1 = Pr, )~p, ., [bnt1(z) # y] = 1/2". It follows thata,,; =
%ln e %111(2” — 1). Thus an explicit expression for the final hypothesis of Adega@fter

€En41

one pass over the + 1 classifierdy, ..., b,1 is H(z) = sgn(f(z)), where
flx) =3 (ln (}fé;)) (@14 4 20) + 202" = 1))z i1

Using the fact that (z) # y if and only if y f (z) < 0, it is easy to establish the following:

Claim 10 The classifield () makes a mistake o, y) if and only if more thard of the variables

x1,...,x, disagree withy, whereA = 2 + 12“1;2?:217)
1—-2~
For (x,y) drawn from sourc®, we have that each af;, . . ., z,, independently agrees wighwith

probability% + ~. Thus we have established the following:

Lemma 11 Let B(n, p) denote a binomial random variable with parameter® (i.e. a draw from
B(n,p) is obtained by summing i.i.d. 0/1 random variables each of which has expectatign
Then the AdaBoost final hypothesis error rat@®is{B(n, + — ) > AJ, which equals

£ (V)arz-wraze )

i=|A]+1 \?

In terms of Lemma 11, Lemma 7 states that the PickyAdaBgpdinal hypothesis has error
Pr[B(n,3 — ) > n]. We thus have that A < n — 1 then AdaBoost's final hypothesis has
greater error than PickyAdaBoost.

We now give a few concrete settings for n with which PickyAdaBoost beats AdaBoost. First
we observe that even in some simple cases the AdaBoost ateof™) can be larger than the Pick-
yAdaBoost error rate by a fairly large additive constantkiig n = 3 and~y = 0.38, we find that

the error rate of PickyAdaBod@) is (5 — 0.38)% = 0.001728, whereas the AdaBoost error rate is

(3 —0.38)% +3(5 — 0.38)%- (5 + 0.38) = 0.03974.

Next we observe that there can be a large multiplicativeofadifference between the AdaBoost and
PickyAdaBoost error rates. We have tiRt[B(n,1/2 — v) > A] equaIsZ?:_OL“”_1 (M@a/2-
¥)"~%(1/2 + ~)*. This can be lower bounded by

n—|A]-1 n
Pr(B(n,1/2—7) > A > (1/2— )" 5" () 6)

i=0 ?

this bound is rough but good enough for our purposes. Viewiag an asymptotic parameter and
as a fixed constant, we have

©=a/2- 5 (1) Q

=0



wherea = 1 — 122 _ o(1). Using the bound_{", (%) = 2m(H(@)=e() which holds for

21n %
0 < a < 1, we see that any setting ofsuch thaty is bounded above zero by a constant gives an
exponential gap between the error rate of PickyAdaBoosiofwis (1/2 —+)™) and the lower bound
on AdaBoost’s error provided by (7). As it happens any 0.17 yieldsa > 0.01. We thus have

Claim 12 For any fixedy € (0.17,0.5) and anyy < 7, the final error rate of AdaBoost on the
sourceD is 2%(") times that of PickyAdaBod3t).

3.3 Base classifiers in an arbitrary ordering

The above results show that PickyAdaBoost can outperformBdgdst if the base classifiers are
considered in the particular ordeyr, . . . , b,+1. A more involved analysis (omitted because of space
constraints) establishes a similar difference when the bissifiers are chosen in a random order:

Proposition 13 Suppose thal.3 < v <5 < 0.5 and0 < ¢ < 1 are fixed constants independent of

. def In 5=z e . .
n that satisfyZ(vy) < ¢, whereZ () - lzﬂ;ﬁf Suppose the base classifiers are listed in an

=23
order such thab,, 1 occurs at positior:- n. Then the error rate of AdaBoost at le@stl-9) —1 =
222(n) times greater than the error of PickyAdaBo@gt

For the case of randomly ordered base classifiers, we may~asna real value that is uniformly
distributed in[0, 1], and for any fixed constant3 < v < 0.5 there is a constant probability (at least
1 — Z(~)) that AdaBoost has error ra2&(™ times larger than PickyAdaBodst). This probability
can be fairly large, e.g. foy = 0.45 it is greater tharl /5.

4 Experiments

We used Reuters data and synthetic data to examine the beladthree algorithms: (i) Naive
Bayes; (ii) one-pass Adaboost; and (iii) PickyAdaBoost.

The Reuters data was downloaded framav. davi ddl ewi s. com We used the ModApte splits
into training and test sets. We only used the text of eachlestand the text was converted into
lower case before analysis. We compared the boosting #igmsiwith multinomial Naive Bayes
[7]. We used boosting with confidence-rated base class[B&raith a base classifier for each stem
of length at most 5; analogously to the multinomial Naive 8aythe confidence of a base classifier
was taken to be the number of times its stem appeared in thg8ohapire and Singer [8, Section
3.2] suggested, when the confidence of base classifiers thammunded a priori, to choose each
voting weighta, in order to maximize the reduction in potential. We did thisjing Newton’s
method to do this optimization.) We averaged over 10 randemmptations of the features. The
results are compiled in Table 1. The one-pass boostingitligts usually improve on the accuracy
of Naive Bayes, while retaining similar simplicity and couatational efficiency. PickyAdaBoost
appears to usually improve somewhat on AdaBoost. Usihdest at level 0.01, the W-L-T for
PickyAdaBoostf.1) against multinomial Naive Bayes is 5-1-4.

We also experimented with synthetic data generated actptdia distributiorD defined as follows:
to draw (x, y), begin by pickingy € {—1,+1} uniformly at random. For each of tHefeatures
z1,...,xx in the diversey-good set’, setz; equal toy with probability1/2 + ~ (independently
for eachi). The remaining: — k variables are influenced by a hidden variablevhich is set
independently to be equal tpwith probability4/5. The featuresyy,...,x, are each set to
be independently equal towith probabilityp. So each such; (j > &k + 1) agrees withy with
probability (4/5) -p + (1/5) - (1 — p).

There were 10000 training examples and 10000 test examptetriedn = 1000 andn = 10000.

Results whem = 10000 are summarized in Table 2. The boosting algorithms prelolicigerform
better than Naive Bayes, because Naive Bayes assigns tdowaight to the correlated features.
The picky boosting algorithm further ameliorates the dftdc¢his correlation. Results far = 1000
are omitted due to space constraints: these are qualliasivailar, with all algorithms performing
better, and the differences between algorithms shrinkangesvhat.



Error rates Feature counts

Data NB | OPAB PickyAdaBoost NB | OPAB PickyAdaBoost
0.001] 001 ] 0.1 0.001]0.01]0.1

earn 0.042| 0.023 | 0.020| 0.018]| 0.027|| 19288| 19288 | 2871 | 542 | 52
acq 0.036| 0.094 | 0.065| 0.071| 0.153]| 19288 19288| 3041 | 508 | 41
money-fx || 0.043| 0.042 | 0.041| 0.041| 0.048]|| 19288 | 19288 | 2288 | 576 | 62
crude 0.026| 0.031 | 0.027| 0.026| 0.040]| 19288| 19288 | 2865 | 697 | 58
grain 0.038| 0.021 | 0.023] 0.019| 0.018]| 19288 19288 | 2622 | 650 | 64
trade 0.068| 0.028 | 0.028| 0.026| 0.029]| 19288| 19288| 2579 | 641 | 61
interest || 0.026| 0.032 | 0.029| 0.032] 0.035]| 19288| 19288| 2002 | 501 | 58
wheat 0.022| 0.014 | 0.013] 0.013] 0.017]| 19288| 19288| 2294 | 632 | 61
ship 0.013| 0.018 | 0.018| 0.017| 0.016]| 19288| 19288 | 2557 | 804 | 67
corn 0.027| 0.014 | 0.014| 0.014| 0.013]| 19288| 19288 | 2343 | 640 | 67

Table 1: Experimental results. On the left are error rateshen3299 test examples for Reuters
data sets. On the right are counts of the number of featusssinghe models. NB is the multino-
mial Naive Bayes, and OPAB is one-pass AdaBoost. Resultstaoen for three PickyAdaBoost
thresholds: 0.001, 0.01 and 0.1.

k D ~ NB | OPAB PickyAdaBoost
0.07] 0.1 70.16
20 [ 0.85]0.24] 0.2 | 0.11 [ 0.04] 0.04] 0.03
20 | 09 | 0.24] 0.2 | 0.09 | 0.03] 0.03]| 0.03
20 | 0.95| 0.24] 0.21| 0.06 | 0.02] 0.02] 0.02
50 | 0.7 | 0.15] 0.2 | 0.13 | 0.06| 0.04| 0.09
50 | 0.75] 0.15]| 0.2 | 0.12 | 0.05] 0.04| 0.03
50 | 0.8 | 0.15] 0.21] 0.11 | 0.04| 0.03]| 0.03
100] 0.63| 0.11] 0.2 | 0.14 | 0.07]| 0.05
100| 0.68| 0.11] 0.2 | 0.13 | 0.06| 0.05
100| 0.73] 0.11] 0.2 0.1 [ 0.05|0.04

Table 2: Test-set error rate for synthetic data. Each va@miaverage over 100 independent runs
(random permutations of features). Where a result is odyittee corresponding picky algorithm did
not pick any base classifiers.
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