LEARNING RULES AND EXCEPTIONS FOR REGRESSION: THE REX
ALGORITHM

by
Zafer Barutguoglu

B.A., in Mathematics, Bogazici University, 2000

Submitted to the Institute for Graduate Studies in
Science and Engineering in partial fulfillment of
the requirements for the degree of
Master of Science
in

Computer Engineering

Bogazici University

2002

LEARNING RULES AND EXCEPTIONS FOR REGRESSION: THE REX
ALGORITHM

APPROVED BY:

Assoc. Prof. Dr. Ethem Alpaydin

(Thesis Supervisor)

Assoc. Prof. Dr. Lale Akarun =~

Prof. Dr. Giinhan Dindar

DATE OF APPROVAL: 13.06.2002

i

iii

ACKNOWLEDGEMENTS

First of all, T am grateful to my wife Itir who patiently endured the countless
days and nights of my thesis work and cheered me up when all the numbers seemed
wrong, as | worked away a year of our youth. She has put into this thesis more than

she is aware of. Not to mention the delicious late night snacks, ice cream and coffee.

I am indebted beyond words to my thesis supervisor Ethem Alpaydin for giving
me this opportunity and his precious time. I shall forever try to be worthy of his
confidence in me. Under his guidance this research has been a thoroughly enjoyable

and inspirational experience.

I would like to thank Lale Akarun and Giinhan Diindar for participating in my

thesis jury and their careful reviews of the manuscript.

A. Safa Topbag and the fellow developers at Turk Nokta Net all deserve my
gratitude for their hearty support.

iv

ABSTRACT

LEARNING RULES AND EXCEPTIONS FOR
REGRESSION: THE REX ALGORITHM

The human mind models many concepts as a general rule and a few specific ex-
ceptions. The rule is simple and covers most cases, and the exceptions allow learning
obscure examples while still keeping the rule simple and useful. The algorithm RFEzx
(Rules and Ezceptions) applies the same paradigm to machine learning to produce an
accurate and interpretable learning model. Previously explored for classification with
success, REx is adapted in this thesis to regression problems. Using another simpler
algorithm as a base rule, it determines a set of exceptions in the training data, and
augments the rule by nondestructively incorporating the exceptions as local experts.
Both collaborative and mixture combination schemes are explored, with a possible
improvement through finding clusters of exceptions. Also included are detailed exam-
inations of Bagging, AdaBoost variants and Support Vector Machines for regression,
because of their relation to REx in emphasizing some examples more than others. Sim-
ulations on several datasets provide empirical support for the discussion comparing all
algorithms. The results indicate that while the mixture version of REx suffers from
certain structural drawbacks that hinder consistent learning, the collaborative version

achieves satisfactory performance, especially with simple rules.

OZET

REGRESYON ICIN KURAL VE ISTISNALARIN
OGRENILMESI: REX ALGORITMASI

Insan zihni bircok kavrami genel bir kural ve birkag istisna olarak sekillendirir.
Kural basit olup ¢ogu durumda gecerliyken, istisnalar kuralin basitligini ve kullaniglih-
gin1 bozmadan siradigt orneklerin de 6grenilebilmesini saglar. REz algoritmast bagaril
ve anlagilabilir bir 6grenme modeli olusturmak icin ayni prensibi yapay ogrenmeye
uygular. Daha once siniflandirma icin incelenmis ve bagariya ulagmig olan REx bu
tezde regresyon problemlerine, yani ¢iktisi siirekli problemlere uyarlanmaktadir. Daha
basit bagka bir algoritmayi temel kural olarak kullanarak ogrenme verilerinden bir
dizi istisna belirlenir, ve istisnalar1 yerel uzmanlar olarak ekleyerek kural bozulmadan
genigletilir. Tezde hem igbirlik¢i hem de karigim birlestirme senaryolar: incelenmekte,
ve yogun istisna gruplarini bulmaya dayanan bir ek anlatilmaktadir. Ayni zamanda,
bazi 6rnekleri vurgulamak yoniinden REx ile ilintili olduklarindan, regresyon amaclh
Bagging, AdaBoost cesitleri ve Destek Vektorii Makinalar da detayh olarak incelen-
mektedir. Tim algoritmalar: kargilagtiran tartigmalar cesitli veri kiimeleri tizerinde
yapilan benzetimlerden gelen deneysel degerlerle desteklenmektedir. Alinan sonuclara
gore, REx’in karigim tiirii tutarli 6grenmeyi zorlagtiran bazi yapisal sorunlar icerirken,

igbirlik¢i hali 6zellikle basit kurallar kullanildiginda tatmin edici bagariya sahiptir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS e iii
ABSTRACT e iv
OZET . . . e v
LIST OF FIGURES e e viii
LIST OF TABLES e e xXvi
LIST OF SYMBOLS/ABBREVIATIONS Xix
1. INTRODUCTION e e e e e 1
2. BAGGING AND ADABOOST 3
2.1. Model Aggregation 4
2.2. Bagging 4
2.2.1. Best-Ratio Bagging L. 6

2.2.2. Weighted Bagging 7

2.2.3. Cross-Validation Aggregating (CVA) 7

2.3. The AdaBoost Approach 8
2.3.1. AdaBoost.R 10

2.3.2. Distribution-Based Algorithms. 12

2.3.2.1. Drucker’s AdaBoost 12

2.3.2.2. The ZEMEL-P1TASSI Algorithm (using square loss) 15

2.3.3. Relabeling Algorithms 16

2.3.3.1. The LS_Boost Algorithm 16

2.3.3.2. The LAD_Boost Algorithm 18

3. SUPPORT VECTOR MACHINES 21
3.1, OVerview 21
3.2. The Linear Problem 22
3.3. A Solution Strategy 23
3.4. Nonlinear Kernels oo 25
3.5. Tuning Insensitivityo Lo 28
3.6. Remarks L 29

vii

4.1. Partitioning 30
4.2. Combining 31
4.3. Collaborative REx 32
4.3.1. Linear Rule Lo 32
4.3.2. MLP Ruleo 34

4.4. Mixture REx 35
4.5. Clustering 36
5. SIMULATION RESULTS e 39
5.1. Datasets and Methodology 39
5.2. Base Algorithm Results 42
5.3. Bagging and AdaBoost Results 46
5.4. Support Vector Machine Results 51
5.5. REx Results o 53
5.6. Overall Comparison o7
5.7. Complexity Analysis 81
6. CONCLUSIONS AND FUTURE WORK 83
APPENDIX A: EXTRA FIGURES 86
A.1. Base Algorithm Errorso 86
A.2. Outputs on syndata 88
A.2.1. Base Modelson syndata 88
A22 C-RExonsyndata 90
A23. C-RExonsyndata 91
A.2.4. C-REx with Clustering on syndata 92
A.2.,5. MREx with Clustering on syndata 93

A.3. Thresholds 94
A.3.1. CREx Thresholds 94
A.3.2. MREx Thresholds 104
A.3.3. C-REx Thresholds with Clustering 114
A.3.4. M-REx Thresholds with Clustering 120

A.4. Bagging and AdaBoost Errors oo 0oL 126
A5, Time Complexities 130

REFERENCES 147

Figure 2.1.

Figure 2.2.

Figure 2.3.

Figure 2.4.

Figure 2.5.

Figure 2.6.

Figure 2.7.

Figure 2.8.

Figure 3.1.

Figure 4.1.

Figure 4.2.

Figure 4.3.

Figure 4.4.

Figure 4.5.

Figure 4.6.

LIST OF FIGURES

The Bagging algorithm (for regression)

The Best-Ratio Bagging algorithm

The Cross-Validation Aggregating (CVA) algorithm

The original AbDABoosT.R L.

Drucker’s AdaBoost algorithm

Zemel & Pitassi’s algorithm

The LS_BoosT algorithm

The LAD_BoosT algorithm

The Support Vector Regression algorithm

REx: Determining exceptions

Network diagram of C-REx using linear rule

Network diagram of C-REx using MLP rule.

Network diagram of M-REx using linear rule

Network diagram of M-REx using MLP rule

REx: Finding exception clusters

viil

Figure 5.1.

Figure 5.2.

Figure 5.3.

Figure 5.4.

Figure 5.5.

Figure 5.6.

Figure 5.7.

Figure 5.8.

Figure 5.9.

Figure 5.10.

Figure 5.11.

Figure 5.12.

Figure 5.13.

Figure 5.14.

Figure 5.15.

Figure 5.16.

Dataset syndata (1000 examples)

The J-leaf Regression Tree algorithm

Base algorithm errors for syndata

Base algorithm errors for votes

Base algorithm errors for birth

15-leaf regression tree output on syndata

5-hidden-unit MLP output on syndata

Bagging and AdaBoost errors on syndata using 5-leaf trees

Bagging and AdaBoost errors on syndata using 15-leaf trees

BAGGING output on syndata using 15-leaf trees

DRUCKER.AD output on syndata using 15-leaf trees

LS_BoOST output on syndata using 15-leaf trees

SVM output on syndata with v =0.02 and vy =5

SVM output on syndata with v = 0.05 and v =5

SVM output on syndata with v = 0.05 and v = 10

C-REx output on syndata with 2-hidden-unit MLP rule and ¢ = 6

without clustering oo

ix

40

43

44

44

45

46

47

48

48

Figure 5.17.

Figure 5.18.

Figure 5.19.

Figure 5.20.

Figure 5.21.

Figure A.1.

Figure A.2.

Figure A.3.

Figure A.4.

Figure A.5.

Figure A.6.

Figure A.7.

Figure A.8.

Figure A.9.

C-REx output on syndata with linear rule and ¢ = 1.8 with 10 clus-

ters L o6
M-REx output on syndata with linear rule and ¢ = 1.4 with

10 clusters 56
C-REx output on syndata with 2-hidden-unit MLP rule and ¢ =

1.4 with 10 clusters Lo o7
M-REx output on syndata with 2-hidden-unit MLP rule and ¢ =

1.4 with 10 clusters oL o8
Error and complexity on kin8fm 82
Base algorithm errors oo 86
Base algorithm errors (continued) 87
Linear and MLP models on syndata. 88
Regression tree models on syndata 89
C-REx without clustering on syndata 90
M-REx without clustering on syndata 91
C-REx with clustering on syndata 92
M-REx with clustering on syndata 93
C-REx thresholds on syndata 94

Figure A.10.

Figure A.11.

Figure A.12.

Figure A.13.

Figure A.14.

Figure A.15.

Figure A.16.

Figure A.17.

Figure A.18.

Figure A.19.

Figure A.20.

Figure A.21.

Figure A.22.

Figure A.23.

Figure A.24.

Figure A.25.

C-REx thresholds on boston

C-REx thresholds on calif1000

C-REx thresholds on prostate

C-REx thresholds on votes

C-REx thresholds on birth

C-REx thresholds on kin8fm

C-REx thresholds on kin8fh

C-REx thresholds on kin8nm

C-REx thresholds on kin8nh

M-REx thresholds on syndata

M-REx thresholds on boston

M-REx thresholds on calif1000

M-REx thresholds on prostate

M-REx thresholds on votes

M-REx thresholds on birth

M-REx thresholds on kin8fm

xi

Figure A.26.

Figure A.27.

Figure A.28.

Figure A.29.

Figure A.30.

Figure A.31.

Figure A.32.

Figure A.33.

Figure A.34.

Figure A.35.

Figure A.36.

Figure A.37.

Figure A.38.

Figure A.39.

Figure A.40.

Figure A.41.

M-REx thresholds on kin8th

M-REx thresholds on kin8nm

M-REx thresholds on kin8nh

C-REx thresholds with clustering on syndata and boston

C-REx thresholds with clustering on calif1000 and votes

C-REx thresholds with clustering on prostate and abalone

C-REx thresholds with clustering on birth and kin8fm

C-REx thresholds with clustering on kin8fh and kin8nm

C-REx thresholds with clustering on kin8nh

M-REx thresholds with clustering on syndata and boston

M-REx thresholds with clustering on calif1000 and votes

M-REx thresholds with clustering on prostate and abalone . . .

M-REx thresholds with clustering on birth and kin8fm

M-REx thresholds with clustering on kin8fh and kin8nm

M-REx thresholds with clustering on kin8nh

Bagging and AdaBoost on syndata, boston and calif1000. . . .

xii

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

Figure A.42.

Figure A.43.

Figure A.44.

Figure A.45.

Figure A.46.

Figure A.47.

Figure A.48.

Figure A.49.

Figure A.50.

Figure A.51.

Figure A.52.

Figure A.53.

Figure A.54.

Figure A.55.

Figure A.56.

Figure A.57.

Bagging and AdaBoost on prostate, votes and birth 127
Bagging and AdaBoost on abalone, kin8fm and kin8fh. 128
Bagging and AdaBoost on kin8nm and kin8nh 129
Error/Complexity of C-REx on syndata 130
Error/Complexity of M-REx on syndata 130
Error/Complexity of C-REx on boston 131
Error/Complexity of M-REx on boston 131
Error/Complexity of C-REx on calif1000 132
Error/Complexity of M-REx on ¢calif1000 132
Error/Complexity of C-REx onvotes 133
Error/Complexity of M-REx on votes 133
Error/Complexity of C-REx on prostate 134
Error/Complexity of M-REx on prostate 134
Error/Complexity of C-REx on abalone 135
Error/Complexity of M-REx on abalone 135
Error/Complexity of C-REx on birth 136

Figure A.58.

Figure A.59.

Figure A.60.

Figure A.61.

Figure A.62.

Figure A.63.

Figure A.64.

Figure A.65.

Figure A.66.

Figure A.67.

Figure A.68.

Figure A.69.

Figure A.70.

Figure A.71.

Figure A.72.

Figure A.73.

xXiv

Error/Complexity of M-REx on birth 136
Error/Complexity of C-REx on kin8fm 137
Error/Complexity of M-REx on kin8fm 137
Error/Complexity of C-REx on kin8fh 138
Error/Complexity of M-REx on kin8fh 138
Error/Complexity of C-REx on kin8nm 139
Error/Complexity of M-REx on kin8nm 139
Error/Complexity of C-REx on kin8nh 140
Error/Complexity of M-REx on kin8nh 140
Error/Complexity on syndata 141
Error/Complexity on boston 141
Error/Complexity on calif1000 142
Error/Complexity on votes 142
Error/Complexity on prostate 143
Error/Complexity on birth 143
Error/Complexity on kin8fm 144

Figure A.74.

Figure A.75.

Figure A.76.

Figure A.77.

XV

Error/Complexity on kin8fh 144
Error/Complexity on kin8nm 145
Error/Complexity on kin8nh 145

Error/Complexity on abalone 146

Table 5.1.

Table 5.2.

Table 5.3.

Table 5.4.

Table 5.5.

Table 5.6.

Table 5.7.

Table 5.8.

Table 5.9.

Table 5.10.

Table 5.11.

Table 5.12.

Table 5.13.

Table 5.14.

Table 5.15.

XVi

LIST OF TABLES

Properties of the datasets used 40
Errors of Bagging and AdaBoost on syndata 60
Errors of SVM and REx on syndata 60
Errors of Bagging and AdaBoost on boston 61
Errors of SVM and REx on boston 61
Errors of Bagging and AdaBoost on calif1000 62
Errors of SVM and REx on calif1000 62
Errors of Bagging and AdaBoost on votes 63
Errors of SVM and RExonvotes 63
Errors of Bagging and AdaBoost on prostate 64
Errors of SVM and REx on prostate 64
Errors of Bagging and AdaBoost on birth 65
Errors of SVM and REx on birth 65
Errors of Bagging and AdaBoost on abalone 66
Errors of SVM and REx on abalone 66

Table 5.16.

Table 5.17.

Table 5.18.

Table 5.19.

Table 5.20.

Table 5.21.

Table 5.22.

Table 5.23.

Table 5.24.

Table 5.25.

Table 5.26.

Table 5.27.

Table 5.28.

Table 5.29.

Table 5.30.

Table 5.31.

xvii

Errors of Bagging and AdaBoost on kin8fm 67

Errors of SVM and REx on kin8fm 67
Errors of Bagging and AdaBoost on kin8fh 68
Errors of SVM and REx on kin8fh 68
Errors of Bagging and AdaBoost on kin8nm 69
Errors of SVM and REx on kin8nm 69
Errors of Bagging and AdaBoost on kin8nh 70
Errors of SVM and REx on kin8nh 70
5 x 2cv F-test of Bagging and AdaBoost on syndata 71
5 x 2cv F-test of Bagging and AdaBoost on boston 71
5 x 2cv F-test of Bagging and AdaBoost on calif1000 72
5 x 2cv F-test of Bagging and AdaBoost on votes 72
5 x 2cv F-test of Bagging and AdaBoost on prostate 73
5 x 2cv F-test of Bagging and AdaBoost on birth 73
5 x 2cv F-test of Bagging and AdaBoost on abalone 74
5 x 2cv F-test of Bagging and AdaBoost on kin8fm 74

Table 5.32.

Table 5.33.

Table 5.34.

Table 5.35.

Table 5.36.

Table 5.37.

Table 5.38.

Table 5.39.

Table 5.40.

Table 5.41.

Table 5.42.

Table 5.43.

Table 5.44.

Table 5.45.

Table 5.46.

XViii

5 x 2cv F-test of Bagging and AdaBoost on kin8fh 75
5 x 2cv F-test of Bagging and AdaBoost on kin8nm 75
5 x 2cv F-test of Bagging and AdaBoost on kin8nh 76
5 % 2cv F-test of SVM and REx on syndata 7
5 x 2cv F-test of SVM and REx on boston 7
5 x 2cv F-test of SVM and REx on calif1000 7
5% 2cv F-test of SVM and RExonvotes 78
5 x 2cv F-test of SVM and REx on prostate 78
5 X 2cv F-test of SVM and RExonbirth 78
5 x 2cv F-test of SVM and REx on abalone 79
5 % 2cv F-test of SVM and REx on kin8fm 79
5 x 2cv F-test of SVM and REx on kin8fh 79
5 x 2cv F-test of SVM and REx on kin8nm 80
5 % 2cv F-test of SVM and REx on kin8nh 80
Time complexities of evaluation 81

LIST OF SYMBOLS/ABBREVIATIONS

¢ Combination coefficient for model 7

d Input attribute index

D Number of input attributes

E Error function

F(") Rule model

g} Softmax output of Gaussian unit j for example ¢
ht Output of sigmoidal hidden unit £ for example ¢
i Model index

J Gaussian unit index

J Number of leaf nodes; number of exceptions
k Hidden unit index

K Number of hidden units; number of clusters
L Loss function

N Number of training examples

p§ Output of Gaussian unit j for example ¢

rt Training label of example ¢

Ty Weight of hidden unit &

v Weight of Gaussian unit j

Wy Input weight vector of hidden unit &

Wiy Weight of input attribute d on hidden unit k
x! Input vector of example ¢

7 Input attribute d of example ¢

X Training set

Yy Model output for example ¢

€ Error threshold

n Learning rate

L Mean vector of Gaussian unit j

Kid Mean vector attribute d of Gaussian unit j

Xix

In
MLP
SVM

Standard deviation of Gaussian unit j

Logarithm to base e
Multi-Layer Perception
Support Vector Machine

XX

1. INTRODUCTION

The task of supervised machine learning consists of approximating an unknown
target function for which the outputs are known only for certain inputs. Every learning
algorithm assumes a model for the candidate functions among which the best approxi-
mation to the target function will be sought. The model is defined by a set of model
parameters, which are to be determined using a set of known input-output pairs (called
the training set). This is inherently an ill-posed problem, since the training set by it-
self does not specify the target function completely. There may be infinitely many
possible candidate functions that all comply with the given data but differ elsewhere.
Different learning algorithms make different assumptions about the unseen data and
the target function, and arrive at different solutions. The final predictive accuracy of a
model depends on how well the algorithm’s assumptions hold for the given data. Since
there is no simple “silver bullet” algorithm, the machine learning practitioner needs to
maintain a toolbox of existing algorithms, with an understanding of which to apply to

what kind of data.

Learning problems are often categorized into two types, as classification and
regression. Classification is when the output range of the target function is a finite
set of values, since the function effectively places the given input into one of a number
of classes. Otherwise, if the output is from a (possibly infinite) range of continuous

values, the learning process is called regression, or function approximation.

The algorithm RFEz (Rules and Exceptions) was originally proposed in [1], and
analyzed for classification tasks in [2, 3, 4, 5], with significant theoretical and empirical
results. In this work, we extend the algorithm to regression problems, and compare it

to Bagging, AdaBoost variants and Support Vector Machines.

REx works by selecting some of the training examples as exceptions. This ap-
proach of isolating “difficult” examples is reminiscent of the well-known AdaBoost and

Support Vector Machine methods. REx has a rule algorithm given to it, and it uses the

rule to first determine the exceptions. Then placing Gaussian units centered at each
exception, it produces a combined network model of the rule model and the exception
units. Finally, the whole combined model is trained together, so that the rule is aware
of the exceptions and does not try to fit them. The Gaussian means and variances are
also allowed to change, adjusting to the rule in turn. If there are too many exceptions,
they can be reduced by clustering. Two different versions of REx are proposed. Col-
laborative REx uses a linear combination of the rule and the exception outputs, while
Mixture REx gives a Gaussian unit also to the rule and uses the softmax function on
the outputs to make a single exception or the rule significantly more active than others

at a given time.

This thesis is organized as follows. Section 2 describes AdaBoost and its precursor
Bagging. Various AdaBoost alternatives for regression are explored, in addition to

several variations proposed on the Bagging theme.

Section 3 is devoted to Support Vector Machines. The topic is motivated be-
ginning with the linear case, and then extended by introducing the use of nonlinear

kernels. A variant with automatic insensitivity determination is also described.

Section 4 describes the novel algorithm REx in detail. The Collaborative REx
and Mixture REx versions are derived, with the complete set of gradient descent up-
date equations included for both a linear rule and a Multi-Layer Perceptron rule for
each version. The section concludes with an improvement for eliminating redundant

exceptions by clustering.

Section 5 is about the simulations, where we describe our experiments and present
the results on various datasets. The algorithm families are compared with each other
and among themselves. Exemplar outputs on a synthetic dataset are plotted to illus-

trate the actual behaviors of the algorithms.

Section 6 draws conclusions from the results and points in possible directions for

future work.

2. BAGGING AND ADABOOST

While some algorithms always produce the same solution for the same training
data, others include a random element. For example, a common approach is to start
with a randomly initialized model, and iteratively update its parameters until the
model gives the correct outputs to the training examples. The randomness introduces
a variance to the algorithm; multiple runs of the same algorithm on the same training

set may converge to different solutions.

Another issue is stability with respect to small changes in training data. Ideally,
a training set should perfectly illustrate the behavior of the target function over the
whole input space. Hence, two training sets for the same problem should produce
identical solutions. However, in practice training data is finite, and often contains
noise resulting in incorrect attribute values. The existence or nonexistence of even
one particular example in a finite training set may be significant enough to produce

different model instances at the end of training.

Combining learners is a way to achieve robustness to changes in model assump-
tions, initial parameters, training set perturbations and noise. Different models can be
heterogeneously combined to be able to succeed in union when the inherent structural
assumptions of some do not hold. Similarly to reduce the overall sensitivity to differ-
ent starting parameters and noisy training examples, multiple instances of the same
model can be combined. For the latter, two well-known algorithms are Bagging [6] and

AdaBoost [7, 8].

Model aggregation algorithms have been proposed and analyzed for classification
in much more detail than regression, possibly due to the wider availability of real-life
applications. Adapting classification algorithms to regression, while trivial for many

other machine learning methods, raises some issues in this setting.

In this section we describe the Bagging and AdaBoost algorithms and several

variants in the context of regression.

2.1. Model Aggregation

The algorithms discussed below are sometimes called master algorithms because

they take another algorithm as the base algorithm and improve its performance.

Their common approach is to create multiple model instances using the given
training data, which are combined to get an aggregate model. The new model combines

the outputs of the base models to form its output.

A master algorithm f uses a base algorithm ¢, and its own parameters ®/ to
produce an aggregate model H for a training set X'. The aggregate model consists of a
set of k instances for the base model h (defined by their parameters ') whose outputs

are combined by an aggregation function F' (parameterized by ') for evaluation:

f(X59,@7) = 0" = ({6}, 07) (2.1)

H(x;0") = F({h(x; 0) }i_1: 0F) (2.2)

2.2. Bagging

Bootstrapping is a method for creating many different training subsets from a
single training set. The subsets, called the bootstrap samples, are formed by randomly
selecting with replacement a fixed number of examples from the original training set.
Random selection with replacement allows examples to be in more than one subset, or
even copied multiple times in the same subset. This enables the bootstrap samples to

be adequately dissimilar while providing the freedom to keep their size usefully large.

The Bagging (Bootstrap Aggregating) algorithm [6] uses bootstrapping on the

e Training

- For each h; of K base models
- Randomly select with replacement M examples from the training set.

- Train base model h; using the selected examples.
e Fvaluation
- Given input z, for each base model h;

- Evaluate base model output y; = h;(x)
- Output the mean 7 = % SK

Figure 2.1. The Bagging algorithm (for regression)

training set to create many varied but overlapping training sets. The base algorithm

is used to create different base model instances using each bootstrap sample.

K samples A; are created from the training set X', each containing M examples
selected randomly with replacement using uniform probabilities. Every sample X; is
learned by a different base model instance h;, and the ensemble output is the average

of all base model outputs for a given input:

Hx) = 3 () 23)

The algorithm is shown in Figure 2.1.

The best accuracy enhancement by Bagging is when the constructed base model
instances are very different from each other. Averaging does not have much effect when
the outputs are already close. Hence, the most suitable base models for Bagging are

unstable models, where small changes in the training set can result in large changes in

e Training

- Remove M of the N training examples to use for validation.
- For each ratio r; € [0,1] in the given ratio set
- Construct Bagging model b; using samples of size r;j(N — M).
- Evaluate b; on the M unused validation examples to get error e;.

- Choose Bagging model b; with the smallest validation error e;.

Figure 2.2. The Best-Ratio Bagging algorithm

model parameters. Multi-layer perceptrons and regression trees are good candidates.

2.2.1. Best-Ratio Bagging

The particular bootstrap sample size being used has an effect on the performance
of Bagging. A very large sample size makes the samples too similar to benefit from
averaging, while selecting them too small produces diverse but very poor base models
which might not be remedied enough by averaging. The optimal ratio of bootstrap
sample size to training set size depends on the particular data being used. Large
training sets will need smaller ratios, while complicated data will call for a larger ratio
than simple data. Instead of finetuning this ratio by hand for each application, we

propose a method for automating a coarse adjustment.

Best-Ratio Bagging removes a number of randomly selected examples from the
training set as a walidation set V, and performs multiple Bagging instances on the
remaining training set X’ for a range of bootstrap sample size to training set size
ratios r;, j = 1,...,J. Each Bagging run uses the same training data X”, only with a
different bootstrapping ratio r;. The resulting Bagging models are compared by their
errors on the validation set 1V, and the Bagging model with the lowest validation error

is chosen as the final model.

e Training

- Randomly divide the training set into K equal partitions.
- For each h; of K base models

- Train base model h; using all examples except those in partition .

Figure 2.3. The Cross-Validation Aggregating (CVA) algorithm

In the AdaBoost family of algorithms sample size is usually taken equal to the
training set size, since the adaptive parameters make variation by subsetting obsolete.
In comparison to Bagging this leaves us with one less free algorithm parameter to be
manually adjusted. It also creates a problem for comparing AdaBoost algorithms and
Bagging as peers, because we will have multiple cases of Bagging to compare with a
single AdaBoost instance. Best-Ratio Bagging is useful for illustrating the best case

performance of Bagging with respect to sample size in such comparisons.

2.2.2. Weighted Bagging

Bagging takes a simple average of base model outputs. Without radically modi-
fying the training procedure, only the evaluation part of AdaBoost can be adopted to
use a weighted median instead. The weights (confidences) can be calculated as in Ad-
aBoost, using average loss with respect to a loss function of choice. See Section 2.3.2.1

for the computation of confidence and weighted median.

2.2.3. Cross-Validation Aggregating (CVA)

For the purpose of producing multiple similar but perturbed subsets from one
training set, K-fold cross-validation is an alternative to bootstrapping. Instead of
using random sampling to create the subsets, the training set X is randomly divided
into K equally sized parts V;, and each training subsets are set to be X; = X — V.

That is, each base model h; is trained using the examples not in V;. We will call this

algorithm Cross-Validation Aggregating (see Figure 2.3). Evaluation is as in Bagging,

combining the base outputs by averaging.

As opposed to random selection with replacement in bootstrapping, cross-valid-
ation is guaranteed to use all training examples exactly once in exactly K — 1 subsets.
For small K, this leads to more efficient use of data than bootstrapping which might

skip some examples and use others multiple times beyond necessity.

However as K increases, the base models are trained on increasingly similar sub-
sets, which should decrease the positive effect of combining. The extreme case is
leave-one-out cross-validation where for a training set of size N there are N subsets of
size N — 1, each excluding a single different example. For all but the smallest training
sets, the subsets will be almost identical, probably learning the same model with each

other and the original set, and not much will be gained by aggregating them.

The only random step in CVA is the partitioning of examples, and this relative
determinism in comparison to Bagging suggests that for multiple runs on the same
data, CVA is more likely to produce similar models. That is, the ensemble model
generated by CVA should have less variance over multiple runs. In this sense, CVA

should be more stable than Bagging.

Note that there is no parameter in CVA corresponding to the bootstrap sample

ratio, since the number of subsets determines the subset size.

2.3. The AdaBoost Approach

The sampling procedure of Bagging assigns an equal probability of selection to
each example for each sample. Since individual samples, and hence the models they
train, are independent of each other, their collective success is through mere redun-
dancy. The boosting approach differs from Bagging by using the base models in active
collaboration, working to compensate for the deficiencies of one another. The general

idea is to learn a group of models in sequence, where each model concentrates more on

the examples where the previous model had high error. Different ways of realizing this

dynamic focus leads to different boosting algorithms.

AdaBoost (Adaptive Boosting) [7, 8] is an efficient and popular implementation of
the boosting principle. Like boosting in general, AdaBoost has been specified, applied

and analyzed with much deeper interest for classification than for regression.

The original AdaBoost classification algorithm improves on Bagging by attempt-
ing to select examples more intelligently. Sampling is now sequential, one sample being
selected after another, and each sample is selected using probabilities affected by the
previous samples. Selection is still random with replacement, but according to dy-
namic probabilities assigned to each training example. For the first sample all example
probabilities are initialized to be equal, as in Bagging. The first model is trained on
this sample, and tested on the whole training set. Examples misclassified by the first
model are then updated to have a higher probability of being selected for the subse-
quent sample. In succession, each model tries to correct the errors of the previous one,

and the overall combined model is continuously complemented where most necessary.

With the flexibility in output labels, regression allows greater freedom in con-
structing algorithms. The basic concept of AdaBoost, relatively constrained in classi-

fication, can be generalized in more than one way for regression.

In their work introducing AdaBoost, Freund & Schapire [7] include a version for
regression (AdaBoost.R) which discretizes each regression prediction into many two-
class classifications. However, motivated from a theoretical construction, it has too

severe restrictions to be useful in practice, as we shall examine.

More on the lines of classification AdaBoost, Drucker [9] and Zemel & Pitassi
[10] give distribution-based algorithms where, like Bagging, all models learn the actual
training labels. The dynamic parameters are scalar example selection probabilities,

adjusted as in classification.

10

Yet another group of algorithms [11, 12, 13], although from different viewpoints,
all aim to minimize residual error through the iterations. The first model tries to learn
the actual training outputs, but the next model is trained to predict the differences
between the first model’s outputs and the actual targets. Proceeding this way, at
each step the new model learns the error remaining from the previous models. Unlike
classical AdaBoost, in these relabeling algorithms the selection probabilities are not
necessarily dynamic, but training labels are, so the models are not trained to learn the

same function.

For our experiments we use the originally proposed ADABOOST.R from the
dynamic-loss algorithms, both Drucker’s and Zemel & Pitassi’s fixed-label algorithms,

and Friedman’s residual methods LAD_BoosT and LS_BoOoOsST.

2.3.1. AdaBoost.R

The original AdaBoost adaptation for regression AdaBoost.R suggested along-
side the classification algorithm is based on decomposing the regression problem into
infinitely many classification tasks, where for each output value a classifier decides
whether the output is above or below [7]. This theoretical foundation does lead to a
feasible implementation, but involves keeping track of updatable and integrable loss
functions, differing for each example. Furthermore, the base learner must be able to
accommodate such dynamic loss, redefinable per example. The original suggestion is
to initialize the loss functions as absolute difference from a center value in which case
the function stays piecewise linear through the piecewise multiplicative updates. This
dynamic-loss approach is also adopted by Ridgeway et al. [14] where the dynamic loss
functions are discretely approximated and initialized to Laplace distributions. How-
ever their experiments on various datasets using naive Bayes base learners yield no
significant justification to afford a per-example redefinable loss, seriously constraining

the choice of base learners if not time complexity.

The algorithm is given in Figure 2.4 with modified notation. In our implementa-

tion we use discrete approximations to the weight distributions. Also we linearly scale

e Training

- For each training example (x',r") where t = 1,..., N
- Initialize weight distribution w;, < [y — r'|.

- For each base model h; where i =1,..., K
- Normalize weight distributions w}, w—gi

where Z = SN, [|y — rt|dy.

- Train base model h; using the example distributions wj, .

- Evaluate the base model outputs y! = h;(x").

- Calculate the average loss L; = N, |ff’j wy, dy|
_ 1-7;

- Calculate ¢; = ln(z—i).

- Update distributions

i

w
t

w;‘}’l _ Y

: ifrt<y<ylory <y<rt
Y

w}, exp(—c;) otherwise
e Fvaluation

- Given input x, for each base model h;
- Evaluate base model output y; = h;(x)
- Output the weighted median

H(x) =inf{y; : > jiyy<y: G 2 %Zj cit

Figure 2.4. The original ADABOOST.R [7]

11

12

our training outputs to [0, 1] as the algorithm requires.

2.3.2. Distribution-Based Algorithms

2.3.2.1. Drucker’s AdaBoost. Drucker’s AdaBoost algorithm [9] is given in Figure 2.5.

The first sample is selected uniform randomly, as in Bagging. The model generated
by this sample then evaluates all examples in the training set, and the selection prob-
abilities are modified to favor examples with high error. Thus the next model will be
trained where the first model was weak. This process is repeated, each model mod-
ifying the probabilities for the next model, until all K models are constructed. The
ensemble output is the weighted median of the base model outputs, weighted by the

models’ training confidences.

The notation in Figure 2.5 is rearranged from the original to resemble the algo-
rithm ZEMEL-P1TASSI for comparison, although the algorithm remains unchanged. An
element’s probability changes with two factors: the loss it incurs alone and the average

(weighted) loss over all examples in that iteration.

At each step ¢ the algorithm minimizes the error function

=3

= exp(ci) P (CiLg) (2.4)

by minimizing per-example losses. Note that another parameter of the function is ¢;, a
measure of confidence over all examples, also used as the combination coefficient during

evaluation. While Drucker’s AdaBoost chooses

¢; =In <1 %Z> (2.5)

to minimize error, this appears to be an ad hoc adoption of the analytical result from

the similar error function in classification.

For the per-example loss function three candidates were suggested: linear loss L =

e Training

- For each training example (x!,7') where t =1,..., N
- Initialize probability p' + +-.
- For each base model h; where : =1,..., K
- Randomly select N training examples with replacement,
where the selection probability of example ¢ is p'.
- Train base model h; using the selected examples.
- For each example in the training set,
- Evaluate the base model output y! = h;(x').
- Calculate the loss L! = L(|y! — r'|) € [0, 1]
e.g. a linear loss L = [y — r'|/sup, |y} — r'|
- Calculate the average loss L; = S~ | Lipt
- Set ¢; = ln(%)

- Calculate Jf = % exp (¢;LE)
- Update probabilities p* < p'.J!.

- Normalize probabilities p* < p'/ >, p/.
e Fvaluation

- Given input x, for each base model h;
- Evaluate base model output y; = h;(x)
- Output the weighted median of y; by ¢;

H(x) = inf{y; : ijngyi cj > %Zj ci}

Figure 2.5. Drucker’s AdaBoost algorithm [9]

13

14

e Training

- For each training example (x!,7!) where t =1,..., N
- Initialize probability p' + <.
- For each base model h; where i =1,..., K
- Randomly select N training examples with replacement,
where the selection probability of example ¢ is p'.
- Train base model h; using the selected examples.
- For each example in the training set,
- Evaluate the base model output y! = h;(x?).
- Set 0 < ¢; < 1 to minimize Y, J! (using line search)

L

where Jf = — exp [c;]y} — r'[?]

- Update probabilities p* < p'.J!.
- Normalize probabilities p* < p'/ >0, pi.

e Fualuation

- Given input z, output the weighted mean

- H(x) =%, cihi(x)/ Xici

Figure 2.6. Zemel & Pitassi’s algorithm

ly—r|/D, square loss Lg = |y—r[*/D? and exponential loss Ly, = 1—exp[—|y—r|/D],
where D = sup, |y* — r’|. We used linear loss (absolute difference) as DRUCKER.AD

and square loss as DRUCKER.S for the experiments.

The evaluated ensemble output is the weighted median of model outputs, weighted
by the combination coefficients ¢;. The weighted median can be computed by first sort-
ing the outputs in order of magnitude, and then summing their weights until the sum
exceeds half the weight total. If the weights were integers, this would be analogous to

duplicating the outputs by their weights and taking the regular median.

15

2.3.2.2. The ZEMEL-PITASSI Algorithm (using square loss). Zemel & Pitassi provide

an algorithm similar to Drucker’s, but with alternative mathematical particulars. The
algorithm is given in Figure 2.6. It is illustrative to examine the algorithm in compar-

ison to Drucker’s.

Here the error function is

! - exp {cz|yf - rt|2] (2.6)

N
J; =

where the ¢; is the combination coefficient.

The loss function is fixed as squared error, and not scaled to [0, 1] by D.

The multiplier is % here, replacing Drucker’s % Nevertheless with 0 < ¢; <
1 they behave similarly (except near the boundaries), so this alone should not cause a

significant difference in performance.

Notably Zemel & Pitassi acknowledge that given this error function, ¢; cannot be

analytically determined, and the algorithm resorts to simple line search to optimize it.

Finally, to combine base model outputs this algorithm uses weighted mean as

opposed to Drucker’s weighted median.

To compare algorithms on equal terms, we implemented this algorithm as ZEMEL-
PiTAssi.S and ZEMEL-P1TASSI.AD, using the original square loss and linear loss re-
spectively. To get the best approximator of minimum absolute error, we replaced
weighted mean by weighted median in ZEMEL-PITASSI.AD. See Section 2.3.2.1 for

weighted median computation.

16

2.3.3. Relabeling Algorithms

Unlike previous methods, in relabeling algorithms the base models are not trained
to predict the actual training set labels. The per-example training errors of the current
combined model are called residues, and each model learns artificial labels formed using
the residues. After training each model 7 the residues are updated by subtracting the

prediction y! of the new model weighted by its coefficient c¢;.

Due to the subtraction of model errors from the residues at each step, the com-
bination rule is additive, using a weighted sum. This incremental addition of models

is motivated as gradient descent in function space in [12].

The principle of AdaBoost, emphasizing difficult (high-error) examples, can be
applied in two ways in relabeling algorithms. Example probabilities may be manipu-
lated as before, or training labels may be transformed. Both methods are obtainable

from the loss function being used.

2.3.3.1. The LLS_BoosT Algorithm. The Least-Squares regression boosting algorithm

is an instantiation of Friedman’s gradient-based boosting strategy [12] using square loss
L = (y — r)?/2 where r is the actual training label and y is the current cumulative
output y; = ¢o + Z§:1 cihj+cihi = yi—1 +¢;h;. The new training labels 7 should be set
to the direction that minimizes the loss, which is the negative gradient with respect to
y evaluated at y;_1. So 7 = [-0L/0y]y=y,_, = r — yi—1 which is the current residual

error. Substituting into the loss, we get the training error

N

E=Yleht —) (2.7

t=1

where 7' are the current residual labels. Setting 0E/dc; = 0 to find the combination

coefficients ¢; yields the algorithm LLS_BoosT, shown in Figure 2.7.

Note that the bias term set in the initial step is redundant for base models that

e Training

- Set g = + S, .

-Fort =1,..., N, initialize residues ! < 7.

- For each base model h; where i =1,..., K
- Train base model h; on {x! 7/}~ .
-Fort=1,...,N where h;(x") # 0,

- Evaluate outputs y! = h;(x").
- Set ¢; = 3, Pyt) S (yh)2.

- Update residues 7* < 7' — ¢;yt.

o Fualuation

- Given input z, output the weighted sum

CH(x) = 5 cihi(x)

Figure 2.7. The LS_BoosT algorithm

17

18

already have or are able to simulate a bias term. It should only be necessary if they

are local functions expensive at approximating global bias.

Duffy & Helmbold give an algorithm SQUARELEV.R, (Square Leveraging for Re-
gression) [11] which only minimizes the variance of the residuals, normalizing them to
zero mean at the very end of training. However this trivially amounts to using the
same square loss function leading to the same coefficients, only adding the bias term

at the end. The two algorithms are identical in effect.

SQUARELEV.C, a variant of SQUARELEV.R, is more interesting in that it takes
the alternative approach of modifying example probabilities to achieve boosting. The
residues are calculated as before, but the base learner is fed not the residues 7, but
their signs sign(r) € {—1,+1}. However now the distribution weight of each example
is made proportional to ||, so each example is still “emphasized” in proportion to
its residual error. At the cost of resampling or handling probabilities in training,

SQUARELEV.C allows using a binary classifier as the base model.

2.3.3.2. The LAD_Boost Algorithm. The Least-Absolute-Deviation regression boost-

ing algorithm is derived from the same gradient-based framework as LLS_BoosT, this
time with linear loss (absolute deviation). In the original it was further specialized to
a certain type of regression trees, but here we use the general form. The algorithm is

shown in Figure 2.8.
The gradient of LAD_B00ST’s linear loss translates to the sign of the residue for
base model targets. This means that all base models are trained on {+1, —1} labels,

which also allows using classifiers for the base algorithm as a bonus.

The coefficient ¢; should minimize the total absolute distance to the residues

N
. At t
c;, = argmin r—cy;
; g mi ;—1‘ Ui

e Training

- Set cg = L, .
-Fort =1,..., N, initialize residues 7 < r* — ¢;.
- For each base model h; where i =1,..., K
- Train base model h; on {x!, sign(#)}Y,.
-For t =1,..., N where h;(x") # 0,
- Evaluate outputs y! = h;(x").

- Calculate weighted inverse outputs z! = #*/y!.

- Set ¢; to the weighted median of 2! by |y!|:

- Update residues 7 < 7' — ¢;yt.
o Evaluation

- Given input z, output the weighted sum

. H(X) =+ Zz Cihi(X)

Figure 2.8. The LAD_BoosT algorithm

19

20

N ; ft
= argmin Yil |7 — ¢
c ; Tyt
N
= argmcinz K Zf—C‘
t=1
. j 1]
= inf{z}: > |yl| > §Z|yzj|}
j:z{ﬁzf Y

which is the weighted median.

Once the optimal weight is found, the residues are updated to exclude the error

corrected by the new model, and iteration may proceed with the next model.

21

3. SUPPORT VECTOR MACHINES

In this section we describe the family of machine learning methods called Support
Vector Machines with a focus on regression problems. After illustrating the fundamen-
tal idea in the linear case, the kernel concept will be introduced for generalization to

nonlinear problems.

3.1. Overview

The Support Vector Machine (SVM) is a machine learning method that has at-
tracted considerable research and industry attention since its relatively recent devel-
opment. Supported by both a sound background in statistical learning theory and an
application-oriented research focus, it has become one of the most successful methods

with respect to generalization performance.

The algorithm is characterized by (and named after) selecting and storing a subset
of the training examples as the important ones (called the support vectors), such that
knowing only these critical training examples is enough to label any previously unseen
input. For example, in a linearly separable two-class classification problem, a number
of examples that are closest to the assumed discrimination boundary are selected as the
support vectors. All other training examples are then unnecessary, since the support
vectors alone sufficiently constrain the boundary from both sides. If training took place
again with all but the support vector examples different and such that no new example
came closer to the boundary, then the same support vectors would be chosen, and
the same boundary would be defined for evaluation, although much of the training set
was different. This invariance to changes in “irrelevant” training data is the merit of

Support Vector Machines, making them resistant to overfitting noisy data.

Compared to non-parametric learners like k-Nearest Neighbors which store all
training examples for evaluation, the much abused term “semi-parametric” is applicable

to the SVM algorithm, though in a very different way than, e.g., neural networks.

22

The fundamental Support Vector Machine formulation is readily applicable to
two-class and multi-class classification, regression and density estimation. In accord
with the emphasis of our research, we will introduce and examine the concepts in the

context of regression problems in particular.

3.2. The Linear Problem

Given training data X = {x!,r'}}¥, and a threshold parameter ¢, the most basic
form of SVM seeks a linear solution that has at most ¢ absolute deviation from the

training label for each example. The linear function can be expressed as

f(x)=wx+b (3.1)

where w € B¢ and b € R are the parameters. vw'x denotes the inner product of the

input and the weight vector.

If there are multiple functions satisfying the error bound, the simplest should be
preferred, with Occam’s Razor in mind. Simplicity in this setting is the flatness of the

function, controlled by the magnitude of the vector w.

If such a function exists, it can be found by solving the convex optimization

problem

minimize i||wl?

(3.2)

rt —wlxt — b

IN
™

subject to
wixt+bh—rt < ¢

However this problem is not feasible if a perfect solution does not exist for the
given training set and error bound. In that case some errors beyond £ must be al-

lowed by the problem if a solution is to be found at all. This is achieved by adding

23

slack variables to relax the possibly infeasible constraints. The optimization problem

becomes

minimize i|w[2+CYTL, (& +&)

7’t — WTXt —b S €+ & (33)
subject to wixt+b—rt < &4 &
gta é-z(2 0

This formulation effectively employs an e-insensitive error function. Deviations

are completely tolerated up to e, and penalized linearly thereafter:

0 ifly—r|<e
E(y,r) = (3.4)

ly —r| —e otherwise

The constant C' > 0 in the objective function determines the balance between
the simplicity of the solution and the tolerance to errors above . A lower value of C
will emphasize minimizing the weights more than the slack variables, yielding a flatter

but more error-prone function.
3.3. A Solution Strategy

The optimization problem at hand can be solved more conveniently in its dual

formulation:

— I SN (= af) (s — at)x!Tx?

maximize
=5 o+ af) + S (o =) .
zt]\il (Oft - O‘ZF) = 0
oy, of e [0,C]

subject to

24

The constant C' is now the upper bound for the new slack variables a; and o},

and is called the capacity parameter.

The dual formulation also yields

w=> (a—a))x' (3.6)
t=1
and hence
N
f(z) = Z (o — af)xTx" + b (3.7)
t=1

This expression shows that the parameter vector w can be written as a linear
combination of the training examples x!. This fact, that a weighted sum of the training
examples completely describes the solution function, is the essence of Support Vector

Machines. The above expression is therefore called the Support Vector expansion.

By the Karush-Kuhn-Tucker (KKT) conditions [15, 16], the product of the dual

variables and the constraints should be zero at the optimal solution:

afe+&—r'+wix+b) = 0 (35)
ajfe+&+rt—wixt—b) = 0
and
0 = o
(00 = O} (3.9)
(o —C) = 0

It can be seen that aya; = 0 so only one slack variable may be nonzero for a given
example. Equation (3.9) implies that the examples outside the e-insensitive boundary
around f are those with aﬁ*) = (. Furthermore, if x' is inside the boundary, then the

second factors in Equation (3.8) will be nonzero, making both a; and «a; zero. The

25

latter illustrates a very important property of SVMs: the Support Vector expansion is
sparse, i.e., only the examples with error € and above, called the Support Vectors, are
necessary to express the solution. The rest, which are inside the boundary, may be
discarded since their coefficients will be zero. This sparsity property allows SVMs to
store only the necessary examples after training, reducing memory requirements and

time complexity.

From Equation (3.8) we also get an expression for computing b given an example

rt—wlx! —¢ fora; € (0,C
b= 1€ (%,0) (3.10)
rt —wixt +¢ foraf € (0,0)

The final b may be found by averaging over all examples having a; € (0,C) or
ay € (0,0)

3.4. Nonlinear Kernels

Although the SVM derivation described so far is exclusively tailored for the linear
problem, it can also be used for the nonlinear case, for example through preprocessing.
By introducing new input dimensions as nonlinear transformations of the original input,
the nonlinear problem can be projected into a feature space where it has a linear
solution. Then the linear SVM algorithm can be used as is. However it is not always
possible to find the necessary feature mapping to a linear space, and as more nonlinear

features are added, this approach quickly becomes computationally infeasible.

Fortunately, looking at the SVM equations reveals that input vectors only appear
in dot products, so instead of explicitly finding a nonlinear mapping ®(x') into a
feature space F, it is enough to find a kernel function k(x*,x*) that directly computes
O (x!)T®(x*). Tt is thus possible to implicitly work in a higher dimensional feature

space without explicitly computing the features.

26

Using the kernel trick, the SVM algorithm in Equation (3.5) becomes

=3 Xit1 e (o0 — o) (s — o)k (x", x°)

maximize
N * N t *
—E) o lopt+ap)+) il —«a
S (o +af) + 35 (o —) (3.11)
N *
Ll — o = 0
subject to iz (o ‘)
, Of e [0,C]
The Support Vector expansion in Equation (3.7) can now be written as
N
f(z) = Z (o — a;‘)k(xt, x)+b (3.12)

t=1

The final general SVM regression algorithm is given in Figure 3.1.

Note that while w = YN | (o — o) ®(x?) is not explicitly computed anymore,
it still exists in the original formulation, and its magnitude is minimized as before.
Hence the nonlinear SVM ensures “flatness” in the feature space, as opposed to the

input space.

The conditions for defining kernel functions are given in [17]. Many useful prop-

erties and classes of kernels are described in [18, 19].
Some commonly used SVM kernels are
Polynomial:

k(x',x°) = (x'"x* + 0)” where pe R, >0 (3.13)

e Training

Given the training set X = {x!,r*}¥ |, ¢ > 0and C > 0,

- Compute oy, a; by solving the optimization problem

—3 Xit1 X (o — o) (s — 0 k(x",x°)

maximize
—€ zt]\il (o + o) + th\il Tt(Oét —af)
SN (ag—af) = 0
subject to =1 (o ‘)
oy, of e [0,C]

- Compute b by averaging over the examples that have ag*) € (0,C):

rt — SN (o — a)k(x®,x) — ¢ for oy € (0,0)

rt — SN (o — a)k(x%,x) +e for af € (0,C)
- Store § = {(x!, 7, ay,}) : ap >0 or af >0}

e Fualuation

- Given input x, output y(x) = Yytes (n —) k(x',x) + b

Figure 3.1. The Support Vector Regression algorithm

27

28

Neural:
k(x!, x*) = tanh(ﬂxths +6) where 5, 6 >0 (3.14)
Radial:

k(x', x*) = exp(—v||x" — x*||*) where v > 0 (3.15)

3.5. Tuning Insensitivity

The particular choice of ¢ directly affects the selection of support vectors, chang-
ing their number and hence model complexity. Too small values may result in overly
complex models with poor generalization while too large values will ignore too many
examples and yield very crude models. The optimal value depends on the noise in the

data at hand.

Taking advantage of the dependency between ¢ and the number of support vec-
tors, a method has been developed to automatically adjust ¢ by controlling the number
of support vectors [20]. With the addition of a new parameter v, ¢ is made a mini-
mized variable in the original optimization problem. Making the dual transformation

as usual, the v-SVM algorithm is obtained:

=5 Xt e (o — o) (s — o)k (x",x°)

+ X0 (o — o)

maximize

(S (m—0ap) = 0 516)

subject to zi\;l (y+af) < CvN

g, O e 1[0,C]

29

To adjust ¢, the new parameter v asymptotically specifies the ratio of support
vectors in the training set. v/N is an upper bound for the number of support vectors
outside the s-boundary (a*) = C) and a lower bound for the total number of support

vectors. See [20] for a proof.

3.6. Remarks

Although the bulk of the SVM algorithm is left to a generic optimization algo-
rithm once the problem is formulated, developing a dedicated optimization algorithm
for solving SVMs provides many opportunities for improving efficiency. There are var-
ious SVM implementations available which considerably reduce complexity by taking
advantage of the nature of the problem. For example the explicit computation of b,
omitted here for »-SVM, is in general not necessary, since it is obtained as a by-product

of the optimization algorithm.

As a final note, it should be mentioned that SVM models are hardly interpretable,
sharing the black-box nature of neural networks, in contrast to e.g. decision trees. For
applications where the learned model will be used to deduce human-understandable

rules from data, Support Vector Machines provide little use.

30

4. REX

It is typical of human thinking to manage knowledge in rules, and exceptions
to the rules where necessary. In learning the past tense forms of English verbs for
example, the rule “append —ed’ covers most cases, and we call such verbs “regular”.
The irregular ones are simply memorized, since any attempt to extend the rule to cover

irregular verbs would make the rule neither as simple nor as useful.

Exceptions usually also allow generalization in their vicinity. For example a per-
son who knows that the past tense of "bend” is "bent”, when faced with the verb
”spend” for the first time, will consider both the rule (”spended”) and the close excep-
tion ("spent”), where indeed the exception generalizes correctly. Of course for many
other similar verbs like "suspend” the rule holds, but we see nevertheless that excep-

tions may be useful beyond predicting just the memorized example.

The algorithm RFEz (Rules and Exceptions) uses this familiar paradigm to tackle
machine learning problems. Most of the data is assumed to be produced by a relatively
simple rule, the other examples being exceptions to the rule. The idea was first pre-
sented in [1], and extensively analyzed and applied for classification in [2, 3, 4, 5], with
significant theoretical and empirical results. In this work, we extend the algorithm
to regression problems, and compare it to Bagging, AdaBoost variants and Support

Vector Machines.
In this section we describe REx for regression.
4.1. Partitioning
The main assumption of REx is that there is a rule that explains most of the data.
The algorithm is given another algorithm that learns the rule, and this rule algorithm

determines which training examples are the difficult ones, using a threshold parameter

and cross-validation.

31

FindExceptions(training set X = {(x’,r")}¥,, rule algorithm F', threshold ¢ > 0)
- Randomly divide X into two equal-sized parts X, X

- Run rule algorithm F on X; to get rule model f;

- Set Sy ={(x,r) € Xy: |fi(x) — 7] > ¢}

- Run rule algorithm F' on X, to get rule model f,

- Set So = {(x,r) € X, : |fo(x) — 7| > €}

- return S; U S,

Figure 4.1. REx: Determining exceptions

The simplest case is two-fold cross-validation, where the training data is divided
into two, the rule is trained on the first part, and tested on the second part. The test
examples with error above the threshold value are marked as exceptions. Then the
rule is trained from scratch on the second part, and tested on the first part, marking
the necessary examples in the first part as exceptions. Combining the two sets of
exceptions completes the partitioning of the training set. We employed this two-fold

case in our implementation. See Figure 4.1.

4.2. Combining

Once the exceptions have been set apart, they should be put to good use in con-
junction with the rule. In classification, the confidence of the rule classifier may dictate
whether the input will be checked with the exceptions or not, but simply storing the
exception is not enough for regression, since there is no simple way to get a confidence
value from a regressor. Training yet another regressor to learn the confidence of the

first is not guaranteed to be an easier problem than trying to learn all data directly.

One idea is to have a radius parameter such that if an example is within that
radius of an exception, it will be handled by the exception and not the rule. A better
way is to make this exception membership continuous, which can be achieved by placing

Gaussians centered at each of the exceptions.

32

If there are .J exceptions, there will be J Gaussians with parameters (1;,%;).
To keep the number of parameters low, we can refrain from using general covariance
matrices and Mahalanobis distance, and work with Euclidean distance assuming equal
variances in all dimensions. Then parameters can be written as (p;,0;) where the f;

are the inputs x of the exceptions. The j’th Gaussian output for test input x! is:

‘6 " — g2
p; = exp [—T‘JZ (4.1)

oj can be set to the quarter of the distance to the nearest other exception, so

that their Gaussians will marginally overlap if the variances are the same.
4.3. Collaborative REx

When there is a Gaussian for each exception, the combined output can be a linear
combination of the rule output and all exception outputs. If we regard the whole
combined model as a single model with parameters including the linear weights, all
Gaussian parameters and the rule parameters, provided that the rule is a differentiable
function, we can train the whole model as one. This allows not only learning the linear
weights and the rule, but also finetuning the exception centers and variances to suit the
rule better. This algorithm is called Collaborative REz, (denoted as C-REx for short),

since the rule and the exceptions work together to form the combined output.
4.3.1. Linear Rule

In the case of a linear rule, since linear transformations of a linear function are
still linear, the two stages of linearity can be combined into one, connecting input units

to the output directly. See Figure 4.2 for a network diagram.

33

Figure 4.2. Network diagram of C-REx using linear rule
The combined output for input x* is then
D J
yt = Z wyrhy + Z vjp§- (4.2)
d=0 j=1

where 2! includes a bias term xy = 1.
Gradient descent using a sum-of-squares error yields the training equations:

Awg = n(r' —y")zy (4.3)
Avj =n(r' —y')p; (4.4)

= pja
Apjg=n(rt — yt)vjp§- (d g]) (4.5)
j

34

— 1]
_— 4.6
— (16)
where 7 is a learning rate constant and may actually be different for each equation.
4.3.2. MLP Rule

Using a multi-layer perceptron for the rule, the second layer is again linear, so the

output unit may be shared by the Gaussians as before. The diagram is in Figure 4.3.

The hidden unit outputs are the sigmoid of their net input:

1
14+e?

sigmoid(f) =

D
h} = sigmoid (Z wkd:rfl> (4.8)
d=0

35

The combined output is:

K J
y' =Y Tehip + > vipj (4.9)

k=0 j=1

And the gradient descent update equations are:

ATy, = n(r' —y")h, (4.10)

Awgg = n(r* —y"Thh (1 — b))z (4.11)
and Equations (4.4), (4.5), (4.6) as before.
4.4. Mixture REx

Instead of taking the linear combination of the Gaussians and the rule, an al-
ternative is to view the model like a Mizture of Erperts architecture [21], where the
exceptions and the rule compete for the output, the one with the maximum gating
value being selected. We call this version Mizture REz, abbreviated as M-REx. The
gating values of the exceptions are based on their Gaussian outputs, and if selected
they will return a linear parameter. The rule will have its own Gaussian gating unit p,
with (p0,02). For differentiability, the softmax function will be used, which is simply

the gating values normalized by their sum:

t
t p;

g; = — " (4.12)
! ZkKZO pfc

And the combined network output is:

J
y'=goF(x") + Y ghv; (4.13)
7=1

36

where F'(x') is the rule output.

After tedious differentiation, gradient descent yields:

Avj =n(r' —y')g; (4.14)
T — 1ja
Apijg = n(r' —y")(v; — y')g; (%) (4.15)
J
x! — p;
Aot = ' — o) o, — o) Ll (1.16)
J

where vy = F/(x") to update the rule mean and variance.
The update equations for rule parameters are, for the linear rule (Figure 4.4):
Awg = ngj(r' — ")y (4.17)
and for the MLP rule (Figure 4.5):

AT, = ngh(r' — y')hy, (4.18)

Awgg = ngi(r' —y")Tehy(1 — hy)ay (4.19)

4.5. Clustering

An overly simple rule model or an inherently discontinuous data may produce
many exceptions concentrated in the same input region, most of which are redundant.

Even though unnecessary exceptions may be hoped to automatically “disappear” dur-

37

Figure 4.4. Network diagram of M-REx using linear rule

Figure 4.5. Network diagram of M-REx using MLP rule

38

FindExceptionClusters(exception set S = {(x*, %)}, cluster count K)
-If |S| < K, return S
- Initialize cluster set 7 = {(x!,7%)}; to a random subset of S
- Repeat until convergence
- Associate every exception (x*,7°) in S with the closest cluster (x%, %)

so that the distance ||x! — x*|| is minimum

- Move every cluster (x%,r!

t,rl) to the mean of its exceptions (x°, 1)

- return T

Figure 4.6. REx: Finding exception clusters

ing finetuning by their linear combination weights going to zero or variances expanding,
chances are high that they will cause the model to overfit. In the very least, they greatly

increase the space and time complexity of the algorithm.

To reduce the number of exceptions without throwing away valuable information,
we apply K-means clustering to find representative exceptions. This algorithm itera-
tively locates a number of cluster centers on the exception data so that every exception
has the minimum squared deviation from the nearest cluster center. Once the clus-
ters are found, the previous exception set is discarded and replaced by the means of
the clusters. As a result, close exceptions are represented by the same cluster mean,

removing redundancy. See Figure 4.6.

The major downside of K-means clustering is that the number of clusters is pre-
specified. If a fewer quantity than the actual number of exception groups is given,
some groups will be degenerately represented, leading to information loss. If too many
clusters are sought, the perils of overfitting and complexity will persist, to the degree
of cluster overhead. Although incremental variants have been proposed that automati-
cally determine the number of clusters, they introduce other parameters to be manually
adjusted. For REx we applied K-means as is, using K as a fraction of the training set

size.

39

5. SIMULATION RESULTS

We implemented the algorithms described so far, and observed their behavior
on several synthetic and real-file datasets. This section details the experimentation

process and the results.

5.1. Datasets and Methodology

We used the datasets in Table 5.1 for our experiments. All of them have one-
dimensional continuous output labels for regression. All input and output attributes,
except those of syndata, were z-normalized to zero mean and unit variance to alleviate
the effects of using Euclidean distance instead of Mahalanobis distance in the case of

multivariate input.

syndata is a dataset that we generated synthetically for observing the behaviors
of algorithms visually. It has 1000 examples of unidimensional input, and on an output
range of [—15,4+15] it has Gaussian noise of zero mean and unit variance. See Figure 5.1

for a plot of all examples.

boston is the well-known Boston house price dataset from the UCI Machine
Learning Repository [22]. It has 506 examples with 12 inputs, trying to predict real

estate prices from various attributes.

calif1000 is a 1000-example subset of the California house price dataset from

[22], similar to boston in objective. It has eight input attributes.

abalone is a dataset for predicting the age of abalone from physical measure-

ments, again from [22]. It has 4177 examples and 10 input attributes.

prostate is a prostate cancer dataset from [23]. It aims to estimate the Gleason

index of patients, an indicator of cancer pervasion. There are 376 examples with seven

15

10

~10 >,

-15

Table 5.1. Properties of the datasets used

inputs

size

syndata
boston
calif1000
abalone
prostate
birth
votes
kin8fm
kin8fh
kin8nm

kin8nh

1
12
8
10

co oo oo oo O ot

1,000

506
1,000
4,177

376

488
3,107
8,192
8,192
8,192
8,192

.
TS
NEIT
LAY
TR AA
- .
¢ e et
. .
w3
PO
Y S
A WP
. AT
. .
2 .. ".'g,,/ .
g
. of it
el PR L A
P et N
St DFTRIS
o0, s
e tt le e WIS
0a e et %, 000,
“ PRSI K
e .',.“‘- ?- e
e . AL A
B
.. o et
> DRI S TN
T o«
v .
X
.
. .
%
‘ .
.
IRy X
. ~
o
C o g
e g e
. .
. P >
. 4. nc"‘:c
. e s A W
K ¢ R AR A
RS SR S0y Pt et
5 . o
et .','..‘,5‘00, .
" o .
- ne .,.}-“-"“:-.‘.-" .
ERAOLACT RN of
s .
S e e
. .
o

.
. . . .
o ® 0 LY
@e 02% e s°
Sl SN et L.
Nt ',;" -, o Y
BRI SRR LAY
PERAT R T N DvE Y
BN PR LA A2
.3 . . '.'.."
o o 4 . o b
. . .
.. .
. . B
. . .
.
o .
.
. .
PR -
e L
.-',Y'. 4, oo
LR -_}:
N e e, o0
“oNee,
o .-;l'
.
.
. 0'0.

Figure 5.1. Dataset syndata (1000 examples)

40

41

inputs.

birth is another medical dataset from [23], predicting the birth weight of a child

based on five attributes of the mother. It contains 488 examples.

votes from the StatLib web site of Carnegie Mellon University, also known as
space_ga, is a spatial data targeted for geographical analyses. It contains 3107 obser-
vations on U.S. county votes cast in the 1980 presidential election, used for predicting

the number of valid votes from each county based on six attributes.

kin8 is a set of four related datasets from StatLib. Based on simulated forward
kinematics of the eight-link Puma robot arm, each dataset has 8192 examples with
eight inputs. The datasets differ in nonlinearity and noise level. kin8fm is fairly linear
with medium noise, while kin8fh is fairly linear with high noise. kin8nm is highly

nonlinear with medium noise, and kin8nh is highly nonlinear with high noise.

For all datasets, we repeated each experiment ten times, using 5 X 2 cross-
validation. That is, we created five different random partitions of the data into two
equal halves, and we trained the algorithm from scratch on each of the ten halves, using
the corresponding other half for testing. All reported errors are the averages of ten
such independent test runs on uncontaminated test sets. Standard deviations of the
ten test errors are also included where possible. The error bars in the figures indicate

one standard deviation above and below the mean error of the ten runs.

Some algorithms with parameters to be manually tuned were evaluated with
all possible combinations over sets of parameter values. Others had to be manually
“tweaked” by trial and error since complexity and sensitivity constraints prohibited

such exhaustive combinations.

42

5.2. Base Algorithm Results

First we shall evaluate the algorithms that were used to serve as base algorithms
to the others that we will examine. For the Bagging and AdaBoost variants we used
the J-leaf regression tree as base, and for REx we used linear models and multi-
layer perceptrons. The performance of these algorithms without any aggregation or
enhancement are investigated below on the datasets. This is both useful to constitute
a benchmark for the enhanced versions, and also to shed light on the structure and

intrinsic complexity of each dataset.

We tested the Bagging and AdaBoost algorithms using J-leaf regression trees as
base models. Our regression tree induction algorithm, given in Figure 5.2, uses constant
leaf labels and subdivides the leaf node with the greatest total squared deviation from
the mean, until a specified leaf count .J is reached or all leaves have a single training
element. The leaf count parameter .J is used to control model complexity. Note that
regression tree algorithms sensitive to output scaling, such as thresholded or variance-
bounded models, are not as suitable for our experiments, since they would require

separate parameter adjustment between residual algorithm steps.

Linear models were trained analytically by using the pseudo-inverse of the covari-

ance matrix, so do not have any parameters.

Multi-layer perceptrons were trained using gradient descent, using a learning rate
parameter n manually adjusted to the data, and a momentum parameter a = 0.5 to

accelerate learning and possibly escape local minima.

For the multi-layer perceptrons we used hidden unit counts of 2, 5, 10, 15, 20,
25 and 30. The same values extended up to 50 were used for the regression trees,
but values above 30 are not shown in the graphs. The linear models are plotted as

zero-hidden-unit perceptrons.

Figures 5.3, 5.4 and 5.5 show the base algorithm errors on syndata, votes and

e Training
- function ConstructTree(training set X, leaf count J)
(returns the root node of a regression tree with at most .J nodes)
- Create tree node RootNode amd let partition P = {(X, RootNode)}
- While |P| < J and at least one (S, Node) € P has |S| > 1, repeat
- Choose (S, Node) € P with |S| > 1 that has the largest error E(S)
where B(S = {x',y"}) = T4y — Ty
- For each input dimension j =1,...,d
- Sort examples in S in ascending order of attribute z;
-For k=2,...,|9|
- Compute split error ef = E({x', y = + B({x, yt}gk)
- Select best split (5/, k') = argminj,k{e;?}
- Sort examples in S in ascending order of attribute z;.
- Compute attribute threshold r = (:E?,,_l + xf,,)/2
- Divide S into child subsets S, = {(x,y) € S: z; <r} and Sg =S\ St
- Create tree nodes Noder,, Nodeg
- Finalize Node as NonleafNode (j',7, Noder,, Nodeg)
- Update partition P < (P \ S) U{(SL, Noder,),(Sr, Noder)}
- For each (S, Node) € P
- Compute 7§ = mean{y : (x,y) € S} and finalize Node as LeafNode (7)

- return RootNode

e Evaluation
- Given input x, call EvaluateTree(RootNode, x)
- function EvaluateTree(Node,x)
- If Node is a LeafNode(y) then return y
- Otherwise, Node is a NonleafNode(j,r, Childy,, Childg)
- If attribute 2; < r then return EvaluateTree(Childy,x)

- Otherwise return EvaluateTree(Childg,x)

Figure 5.2. The J-leaf Regression Tree algorithm

43

test error

test error

44

45+

—— Linear & MLP
v RegTree

i

25r

05 | | | | | | |]
-5 0 5 10 15 20 25 30 35

hidden units or leaves

Figure 5.3. Base algorithm errors for syndata

0.7

Tiann L

—— Linear & MLP
1+ RegTree

0.651

0.55

0.45-

035 1 1 1 1 1 1 1 J
- 0 5 10 15 20 25 30 35
hidden units or leaves

Figure 5.4. Base algorithm errors for votes

45

2 —
—— Linear & MLP
'+ RegTree

1.8f

161
_lar
<l
B -
72 - R R
LT e

1.2 o

0.8 }E

pt
[aemet
=
L E Voot

06 1 III 1 1
-5 0 5 10 15 20 25 30 35
hidden units or leaves

Figure 5.5. Base algorithm errors for birth

birth respectively, varying with hidden units or tree leaves. The full set of base

algorithm error graphs for each dataset can be found in Appendix A.1.

Since syndata has single-dimensional input, it does not suffer from the curse
of dimensionality as the others do. The regression tree is able to become sufficiently
complex to rival MLP in its allowed range of leaves. For the MLP, 5 hidden units

indicate saturation, and for larger numbers beginnings of overfitting are observable.

For votes, the behaviors are similar, only with MLP generalizing with signifi-

cantly less error than the regression tree.

On the small birth dataset the regression tree clearly and inevitably overfits. As
the number of leaves increase, it converges to a memorization of the training data and
yields poor generalization on the test set. MLP suffers much less, possibly due to its

continuous nature, while regression tree output is piecewise constant.

46

15-leaf Regression Tree

1o HECE T

_10 [

_15 1 1 1 1 1 1 1 1 1]
-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 5.6. 15-leaf regression tree output on syndata

Example output plots on syndata are in Figures 5.6 and 5.7. The full set is in
Appendix A.2.

5.3. Bagging and AdaBoost Results

Using J-leaf regression tree base models as described above, one parameter of
each algorithm was inevitably the leaf count J of the tree. The same values as the base

models above were used for J.

The other free parameter was the number of base learners. Values of {2, 5,10, 15,20}

were used.

Best-Ratio Bagging internally used 50 per cent of the original training exam-
ples for validation, and compared the ratios 10, 20, ..., 90 per cent of the remaining

examples for sample size.

47

MLP-5

10

-10

_15 1 1 1 1 1 1 1 1 1
-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 5.7. 5-hidden-unit MLP output on syndata

ADABOOST.R was tested only on syndata, boston and calif1000, where it
yielded properly decreasing test errors like the Bagging methods. It showed no danger-
ous sensitivity to tree size, albeit demonstrating no significant advantage over Bagging

to account for its complexity either.

Figures 5.8 and 5.9 show the test errors of BAGGING, LS_B00OSsT and DRUCKER.AD
on syndata as the number of base models changes. These algorithms were chosen be-
cause they are prime examples of their respective categories. The unaggregated base
algorithm REGTREE is also included, plotted as constant. These figures show some
characteristic behaviors, also observed on most of the other datasets. The plots for all

datasets are in Appendix A.4.

Drucker’s and Zemel & Pitassi’s algorithms did not perform well with very small
trees, increasing test error as more base models were added. Checking the training
errors also revealed similarly increasing error, indicating that this is not due to over-

fitting by adding too many models, but the base models were too coarse to be useful

15
RegTree
— Bagging
— - Drucker.AD
14+ -—- LS_Boost
T
I
1.3F
T
12 }
4
11f
N R
1r \ I - | .
R | . 1
e R R i
! T | :
s | - s
09k H A
0.8 L L L L
0 5 10 15 20

Figure 5.8. Bagging and AdaBoost errors on syndata using 5-leaf trees

1.2

11

0.95

0.9

RegTree

— Bagging
— - Drucker.AD

LS_Boost

Figure 5.9.

Bagging and AdaBoost errors on syndata using 15-leaf trees

10

15 20

48

49

to the distribution-based algorithms.

The relabeling algorithms LAD_BoosT and LS_B0oo0ST gave the best results
with small trees. They started overfitting at much smaller leaf counts than the unag-
gregated base algorithm, probably because their modification of target labels reduces
the complexity of data. This is especially true of LAD_B0OOST which greatly simplifies

the problem for the base learners by discretizing pseudo-targets to binary.

Bagging methods did not have problems with tree size. They used the trees at
hand with consistent success through base model additions, although they needed a
large number of large base models to catch up with the performance of the relabeling

AdaBoost algorithms on small trees.

Our conjecture for the behavior of the CVA algorithm was validated by the
experiment results. CVA was slightly better than the other Bagging algorithms using
very few base models, and fell behind quickly thereafter as the cross-validated training
set versions became increasingly similar. Bootstrapping proved to be the selection

method of choice for aggregation.

The W-BAGGING modification was not useful at all, almost always worse than
BAGGING. This is not surprising, since the bootstrap samples are selected uniform
randomly, so any differences over validation examples must be purely accidental. Any

“confidence” values thus derived are bound to disrupt the Bagging process.

Compared to a fixed 50 per cent ratio of sample size with BAcGiNnG, BR-
BAGGING did not show significant improvement despite the nine-fold execution time.
Still it remains to be the only promising modification to Bagging among those we

implemented, having a slight advantage to BAGGING at times.

Figures 5.10, 5.11 and 5.12 show example outputs on syndata using 15-leaf re-

gression trees as base models.

Bagging, 10 trees with 15 leaves

151

10

-10

_15 1 1 1 1 1 1 1 1 1]
-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 5.10. BAGGING output on syndata using 15-leaf trees

Drucker.AD, 10 trees with 15 leaves
15+

_10 l=

_15 1 1 1 1 1 1 1 1 1]
-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 5.11. DRUCKER.AD output on syndata using 15-leaf trees

20

ol

LS_Boost, 10 trees with 15 leaves

10

-10

_15 1 1 1 1 1 1 1 1 1]
-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 5.12. LS_B0OOST output on syndata using 15-leaf trees

5.4. Support Vector Machine Results

For the SVM implementation we used the LIBSVM package [24].

For ease of use and compatibility of parameters with the other algorithms, we
used the v-SVM variant for our experiments. Our kernel of choice was the radial
kernel (Equation 3.15) because of its congruence to the Gaussian exceptions of REx.
The parameter v which roughly prescribes the ratio of support vectors, the capacity
C, and the kernel spread parameter v were manually set to suitable values for each

dataset by trial and error.

Figures 5.13, 5.14 and 5.15 show Support Vector Machine outputs on syndata

for different parameters. Support vectors are also marked on the graphs.

The performance of the Support Vector Machine algorithm was found to rely

heavily on correctly choosing the hyperparameters C, v, and the kernel parameter

52

SVM with C=1000, v=0.02, y=5 —— 32 SVs found

10

-10

-15 1 1 1 1 1 1 1 1 1]
-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 5.13. SVM output on syndata with v = 0.02 and v =5

SVM with C=1000, v=0.05, y=5 -— 51 SVs found
151

10

-10

-15 1 1 1 1 1 1 1 1 1]
-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 5.14. SVM output on syndata with v = 0.05 and v =5

23

SVM with C=1000, v=0.05, y=10 —— 61 SVs found

151

10

_10 [

-15 1 1 1 1 1 1 1 1 1]
-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 5.15. SVM output on syndata with » = 0.05 and v = 10

~v. v roughly controls the number of support vectors, so too small values yield too
coarse grained regressors, and too high values result in too complex models that overfit.
Similarly, large v parameters make kernel radii too narrow, effecting many support
vectors to cover the examples. And while searching for the right brew of v and v, C

must be kept large enough to allow the desired learning.

Since we used no prior information about the data distribution and noise at hand,
the parameters had to be tuned manually by tedious trial and error. Fortunately, when
we ultimately did succeed in choosing suitable values, the SVM algorithm proved to at

least as good as MLP on most datasets.

5.5. REx Results

Running REx without clustering produced too many exceptions, as expected.
Since the initial variances were accordingly low, these Gaussians stayed as spikes from

the rule, in effect memorizing the exceptions without consequence. See the example

54

plotcrex 6,2,1,1,0.001

10

-10

-15 1 1 1 1 1 1 1 1 1]
-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 5.16. C-REx output on syndata with 2-hidden-unit MLP rule and ¢ = 6

without clustering

C-REx output on syndata in Figure 5.16 for an illustration, where the thin line is the
2-hidden-unit MLP rule. The rule is simpler than needed, but although a very large
error threshold (¢ = 6) was used, the exceptions do not serve to shape it in the right
manner. The resulting function is far from being useful at all, despite a very high

complexity.

Using clustering with ten means, Figures 5.17 and 5.18 are respectively the CREx
and MREx outputs on syndata with a linear rule, and Figures 5.19 and 5.20 show the
algorithms using 2-hidden-unit MLP rules. The thinner lines are the outputs of the
rule, and the Gaussian curves indicate exception clusters in the input space. Compared

to the previous outputs without clustering, the improvement is obvious.

Appendix A.3 includes a set of plots illustrating the effect of thresholds with and
without clustering, for both C-REx and M-REx. The positive results of the smoothing

effect seen in Figure 5.19 are verifiable from these graphs for most datasets.

95

In general, the average of clustered C-REx was at least as good as its rule alone
on all datasets, except syndata where adding exceptions to an MLP was not as fruitful.
With smaller MLPs than the optimal base model fit, the merit of C-REx was more
apparent since the poorly fitting rule was twisted into shape by the exceptions. On
the low-noise datasets kin8fm and kin8nm C-REx was able to satisfactorily improve

its rule beyond the rule’s best performance alone.

M-REx failed to provide a consistent improvement of its base rule on the average

of 10 runs in any dataset.

Compared to C-REX, M-REx turned out to be solving a more difficult problem.
Because of the steep softmax, its output is less smooth, one of the exceptions or the
rule being locally dominant. Contrast the outputs on a linear rule in Figures 5.19
and 5.20 to observe the difference. C-REx produces a smooth stretching of the rule,
while M-REx corrects it in clear-cut pieces. This sharper nature also causes the error
surface of M-REx to be rougher, producing many deep local minima that the algo-
rithm easily gets stuck in. The resulting test error variance is naturally higher than
that of C-REx, indicating a less reliable algorithm. Also, the additional exponential
computations because of softmax make the algorithm numerically capricious, prone
to overflows and underflows. However, despite the difficulties in operation and poor
experimental results, a future study of deriving knowledge from REx models is likely
to find M-REx rather advantageous, since a partitioning into exception or rule regions

is more understandable than a continuous mathematical combination.

Both C-REx and M-REx suffer to a degree from finetuning problems where Gaus-
sian centers go outside the input region, variances spread to infinity or shrink to zero,
and while trying to compensate for a tiny variance some combination weights soar
and cause arbitrarily high spikes. Indicative of the algorithm’s endeavor to dispose of
redundant or poorly initialized exception centers, these problems are also common in
Radial Basis Function networks, and known solutions are directly applicable to REx
such as simple bounding or regularization methods such as weight decay. Educated

initialization of the variances also helps considerably.

26

CREx-Lin threshold=1.8, k=10

10

_10 [

_15 I I I I I]
-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 5.17. C-REx output on syndata with linear rule and ¢ = 1.8 with 10 clusters

MREx-Lin threshold=1.4, k=10

151

Figure 5.18. M-REx output on syndata with linear rule and ¢ = 1.4 with 10 clusters

57

CREXx-MLP-2 threshold=1.4, k=10
15

10

_15 L I fl]
-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 5.19. C-REx output on syndata with 2-hidden-unit MLP rule and ¢ = 1.4

with 10 clusters

5.6. Overall Comparison

Since our Bagging and AdaBoost algorithms use regression trees while REx uses
perceptrons, comparisons based on overall accuracy results are not fair. However bag-
ging or boosting MLPs would not illustrate the gradual enhancement of the simple base
model as well as regression trees, and using linear models would be pointless since the
combination would still be linear. Similarly, using regression trees for REx rules would
not have emphasized the “global rule vs. local exception” paradigm as perceptrons
have allowed. The objective of our experiments was not producing numerical bench-
marks to prove final superiority of one algorithm to another, but to gain an insight to
the particulars of each algorithm, leading to an understanding of when to utilize which
one of them. Having said this, we present the best average errors per example for each
algorithm on the datasets in Tables 5.2-5.23. The occasional lines dividing the tables

show the range boundaries of Duncan’s range test with 95 per cent confidence.

o8

MREx-MLP-2 threshold=1.4, k=10
15

10

_15 I I I I]
-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 5.20. M-REx output on syndata with 2-hidden-unit MLP rule and ¢ = 1.4

with 10 clusters

Tables 5.24-5.45 show the algorithms compared using the 5x 2-fold cross-validated
F test [25] with 95 per cent confidence.

What is not seen in the tables is the improvement that the Bagging, AdaBoost
and REx algorithms provide on relatively simple base models. If we have at our dis-
posal simpler models than necessary to properly learn all data by themselves, these
algorithms allow us significant improvements in accuracy. Although we may be able
to train perceptrons or trees of arbitrary size, both are susceptible to overfitting with
noisy data. Instead of trying to tune complexity with fear of overfitting, using safely
small base models with one of these master algorithms may be less risky. Even in the
extreme case where the base models are inevitably overfitting, they may be bagged to

reduce variance and increase generalization performance.

On the whole, Bagging was observed to be a robust algorithm with respect to

base model complexity, improving overly simple or overly complex base models equally

29

well. AdaBoost variants were superior as long as the base models were well suited,
requiring very simple ones for the relabeling variants and more complex ones for the

distribution-based family. Otherwise AdaBoost performance degraded beyond use.

The ratio parameter of Bagging was found to have negligible effect, 50 per cent
being acceptable in all cases. Other than this and the base model complexity, Bagging
and the AdaBoost algorithms had only the number of base models as the parameter,

which is relatively intuitive and incrementally observable.

Support Vector Machines proved very capable, their flatness constraint providing
inherent regularization against overfitting. However, compared to the other algorithms,
they are rather difficult to use effectively, being a black box with many parameters to

balance.

Of the two types of REx described, C-REx achieved satisfying results, especially
with simple rules. Clustering proved to be indispensible, the exceptions being unac-
ceptably many otherwise. M-REx produced inferior results than its rule alone on all

datasets, demonstrating a need for amending its described problems.

Table 5.2. Errors of Bagging and AdaBoost on syndata

avg | stdev
W-Bagging | leaves= 30 | trees= 20 | 0.8870 | 0.0347
BR-Bagging | leaves= 30 | trees= 15 | 0.8885 | 0.0339
Bagging leaves= 25 | trees= 20 | 0.8905 | 0.0434
Z&P.S leaves= 30 | trees=5 | 0.9001 | 0.0452
CVA leaves= 35 | trees=5 | 0.9033 | 0.0443
Z2&P.AD leaves= 20 | trees=5 | 0.9096 | 0.0394
Drucker.AD | leaves= 25 | trees= 10 | 0.9167 | 0.0552
AdaBoost.R | leaves= 50 | trees= 20 | 0.9187 | 0.0843
Drucker.S leaves= 20 | trees= 10 | 0.9211 | 0.0609
LS_Boost leaves= 10 | trees=5 | 0.9337 | 0.0583
RegTree leaves= 45 0.9426 | 0.0495
LAD_Boost | leaves=5 | trees= 20 | 0.9781 | 0.0504

Table 5.3. Errors of SVM and REx on syndata

avg | stdev
SVM v=0.42 C' =13 |0.9556 | 0.0273
MLP hidden=5 1.0724 | 0.0742
CREx-MLP | hidden=15 | e =1.20 | 1.2623 | 0.1116
MREx-MLP | hidden=10 | ¢ = 1.20 | 1.5678 | 0.3230
MREx-Lin e =0.80 | 2.5088 | 0.3000
CREx-Lin e =1.00 | 2.6837 | 0.1142
Linear 3.0964 | 0.0717

60

Table 5.4. Errors of Bagging and AdaBoost on boston

avg | stdev
Drucker.AD | leaves= 20 | trees= 20 | 0.2760 | 0.0193
Z2&P.AD leaves= 20 | trees= 20 | 0.2803 | 0.0184
Z&P.S leaves= 20 | trees= 15 | 0.2864 | 0.0225
BR-Bagging | leaves= 20 | trees= 15 | 0.2938 | 0.0262
Bagging leaves= 20 | trees= 20 | 0.2953 | 0.0156
W-Bagging | leaves= 20 | trees= 20 | 0.2956 | 0.0191
Drucker.S leaves= 20 | trees= 10 | 0.2972 | 0.0136
AdaBoost.R | leaves= 45 | trees= 20 | 0.3068 | 0.0278
CVA leaves= 20 | trees=5 | 0.3075 | 0.0278
LS_Boost leaves= 15 | trees=5 | 0.3346 | 0.0287
LAD_Boost | leaves= 2 | trees= 20 | 0.3461 | 0.0252
RegTree leaves= 20 0.3500 | 0.0229

Table 5.5. Errors of SVM and REx on boston

avg | stdev
SVM v =0.50 C' =100 | 0.2549 | 0.0138
CREx-MLP | hidden=5 | e =0.30 | 0.2938 | 0.0248
MLP hidden= 2 0.3053 | 0.0254
CREx-Lin e =10.40 | 0.3634 | 0.0260
Linear 0.3774 | 0.0186
MREx-MLP | hidden=10 | ¢ = 0.10 | 0.7700 | 0.0629
MREx-Lin e =10.10 | 0.8053 | 0.1300

61

Table 5.6. Errors of Bagging and AdaBoost on calif1000

avg | stdev
Z2&P.AD leaves= 35 | trees= 20 | 0.4250 | 0.0198
Drucker.AD | leaves= 35 | trees= 20 | 0.4292 | 0.0150
W-Bagging | leaves= 30 | trees= 20 | 0.4364 | 0.0194
BR-Bagging | leaves= 35 | trees= 20 | 0.4436 | 0.0173
Bagging leaves= 35 | trees= 20 | 0.4452 | 0.0162
Z&P.S leaves= 35 | trees= 20 | 0.4469 | 0.0195
CVA leaves= 35 | trees= 10 | 0.4520 | 0.0181
LAD_Boost | leaves=5 | trees= 20 | 0.4551 | 0.0212
Drucker.S leaves= 35 | trees= 10 | 0.4573 | 0.0160
AdaBoost.R | leaves= 35 | trees= 15 | 0.4644 | 0.0220
LS_Boost leaves= 5 | trees= 15 | 0.4683 | 0.0162
RegTree leaves= 35 0.5060 | 0.0284

Table 5.7. Errors of SVM and REx on calif1000

avg | stdev
CREx-MLP | hidden=5 | ¢ =1.00 | 0.3891 | 0.0126
SVM v =0.30 C' =100 | 0.3989 | 0.0126
MLP hidden= 2 0.4037 | 0.0249
CREx-Lin e =1.20 | 0.4327 | 0.0095
Linear 0.4355 | 0.0095
MREx-MLP | hidden=5 | ¢ = 1.20 | 0.7535 | 0.0671
MREx-Lin e =1.00 | 0.8833 | 0.1727

62

Table 5.8. Errors of Bagging and AdaBoost on votes

avg | stdev
Drucker.AD | leaves= 50 | trees= 20 | 0.4433 | 0.0063
Bagging leaves= 50 | trees= 20 | 0.4442 | 0.0055
BR-Bagging | leaves= 50 | trees= 20 | 0.4447 | 0.0055
W-Bagging | leaves= 50 | trees= 20 | 0.4464 | 0.0040
Z&P.AD leaves= 50 | trees= 20 | 0.4474 | 0.0041
7Z&P.S leaves= 50 | trees= 20 | 0.4486 | 0.0060
Drucker.S leaves= 50 | trees= 15 | 0.4553 | 0.0051
CVA leaves= 50 | trees=5 | 0.4577 | 0.0074
LAD _Boost | leaves= 10 | trees= 20 | 0.4718 | 0.0121
LS_Boost leaves= 5 | trees= 20 | 0.4812 | 0.0139
RegTree leaves= 50 0.4930 | 0.0127

Table 5.9. Errors of SVM and REx on votes

avg | stdev
SVM v =0.40 C' =30 |0.3939 | 0.0052
CREx-MLP | hidden= 20 | ¢ = 1.40 | 0.4032 | 0.0078
MLP hidden= 10 0.4059 | 0.0127
CREx-Lin e =1.40 | 0.4754 | 0.0075
Linear 0.4891 | 0.0057
MREx-MLP | hidden= 20 | ¢ = 1.20 | 0.8327 | 0.0532
MREx-Lin e =1.20 | 0.8359 | 0.0520

63

Table 5.10. Errors of Bagging and AdaBoost on prostate

avg | stdev
LAD_Boost | leaves=2 | trees=2 | 0.5996 | 0.0226
W-Bagging | leaves= 35 | trees= 20 | 0.6051 | 0.0442
CVA leaves= 2 | trees= 10 | 0.6270 | 0.0532
7&P.S leaves= 2 | trees=2 | 0.6307 | 0.0492
Bagging leaves= 2 | trees= 20 | 0.6350 | 0.0420
BR-Bagging | leaves=5 | trees= 20 | 0.6415 | 0.0345
7Z&P.AD leaves= 2 | trees=5 | 0.6495 | 0.0749
Drucker.AD | leaves=2 | trees=2 | 0.6503 | 0.0506
RegTree leaves= 2 0.6684 | 0.0723
Drucker.S leaves= 15 | trees= 20 | 0.6776 | 0.0387
LS_Boost leaves=5 | trees=5 | 0.6783 | 0.0531

Table 5.11. Errors of SVM and REx on prostate

avg | stdev
SVM v =0.30 C=3 0.5930 | 0.0355
CREx-MLP | hidden=30 | e =1.20 | 0.6111 | 0.0341
CREx-Lin e=1.80 | 0.6117 | 0.0342
Linear 0.6119 | 0.0331
MLP hidden= 2 0.6357 | 0.0364
MREx-Lin e =1.80 | 0.7507 | 0.0526
MREx-MLP | hidden= 20 | ¢ = 1.20 | 0.7600 | 0.0257

64

Table 5.12. Errors of Bagging and AdaBoost on birth

avg | stdev
BR-Bagging | leaves=5 | trees= 15 | 0.7766 | 0.0290
Bagging leaves= 2 | trees= 15 | 0.7802 | 0.0328
W-Bagging | leaves=5 | trees= 20 | 0.7809 | 0.0306
LS_Boost leaves= 10 | trees=5 | 0.7825 | 0.0281
CVA leaves= 2 | trees= 10 | 0.7848 | 0.0303
Z&P.S leaves= 2 | trees=5 | 0.7897 | 0.0261
Z&P.AD leaves= 2 | trees=5 | 0.7905 | 0.0257
Drucker.AD | leaves=2 | trees=5 | 0.7911 | 0.0265
Drucker.S leaves= 2 | trees=2 | 0.7917 | 0.0338
LAD Boost | leaves= 10 | trees= 10 | 0.7926 | 0.0279
RegTree leaves= 2 0.8122 | 0.0554

Table 5.13. Errors of SVM and REx on birth

avg | stdev
MLP hidden= 2 0.7696 | 0.0335
CREx-MLP | hidden=2 | ¢ =1.60 | 0.7706 | 0.0300
Linear 0.7738 | 0.0311
CREx-Lin e =1.80 | 0.7767 | 0.0296
SVM v =0.30 C =10 |0.7840 | 0.0314
MREx-Lin e =1.80|0.9220 | 0.1176
MREx-MLP | hidden=2 | ¢ = 1.80 | 0.9486 | 0.0955

65

Table 5.14. Errors of Bagging and AdaBoost on abalone

avg | stdev
W-Bagging | leaves= 35 | trees= 20 | 0.4832 | 0.0077
7Z&P.AD leaves= 50 | trees= 10 | 0.4965 | 0.0115
LAD _Boost | leaves= 10 | trees= 20 | 0.4970 | 0.0051
BR-Bagging | leaves= 20 | trees= 20 | 0.5128 | 0.0112
Drucker.AD | leaves= 50 | trees= 10 | 0.5143 | 0.0153
LS_Boost leaves= 20 | trees= 15 | 0.5201 | 0.0085
Bagging leaves= 15 | trees= 20 | 0.5209 | 0.0176
CVA leaves= 15 | trees=5 | 0.5226 | 0.0150
Drucker.S leaves= 25 | trees= 2 | 0.5440 | 0.0293
Z&P.S leaves= 10 | trees= 2 | 0.5443 | 0.0387
RegTree leaves= 10 0.5451 | 0.0049

Table 5.15. Errors of SVM and REx on abalone

avg | stdev
CREx-MLP | hidden= 10 | ¢ = 3.00 | 0.4555 | 0.0070
SVM v =0.40 C=14 0.4594 | 0.0074
MLP hidden= 2 0.4727 | 0.0089
CREx-Lin e =2.50 | 0.5710 | 0.0556
MREx-Lin e =3.50 | 1.0730 | 0.5807
Linear 1.3079 | 1.1231
MREx-MLP | hidden= 10 | ¢ = 3.00 | 1.6330 | 1.2309

66

Table 5.16. Errors of Bagging and AdaBoost on kin8fm

avg | stdev
Drucker.S leaves= 100 | trees= 20 | 0.2795 | 0.0061
Drucker.AD | leaves= 100 | trees= 20 | 0.2878 | 0.0054
Z2&P.AD leaves= 100 | trees= 20 | 0.2944 | 0.0049
Z&P.S leaves= 100 | trees= 20 | 0.2949 | 0.0068
LS_Boost leaves= 10 | trees= 20 | 0.2959 | 0.0106
BR-Bagging | leaves= 100 | trees= 20 | 0.3140 | 0.0082
LAD_Boost | leaves= 10 | trees= 20 | 0.3159 | 0.0117
Bagging leaves= 100 | trees= 20 | 0.3163 | 0.0059
W-Bagging | leaves= 100 | trees= 20 | 0.3297 | 0.0068
CVA leaves= 100 | trees=5 | 0.3583 | 0.0087
RegTree leaves= 100 0.4389 | 0.0034

Table 5.17. Errors of SVM and REx on kin8fm

avg | stdev
CREx-MLP | hidden=15 | e =0.60 | 0.1317 | 0.0016
SVM v =0.10 C=2 0.1360 | 0.0012
MLP hidden= 5 0.1385 | 0.0021
CREx-Lin e=10.70 | 0.2138 | 0.0014
Linear 0.2162 | 0.0011
MREx-Lin e =10.50 | 0.6273 | 0.0961
MREx-MLP | hidden=5 | e =0.80 | 0.6767 | 0.4367

67

Table 5.18. Errors of Bagging and AdaBoost on kin8fh

avg | stdev
Drucker.S leaves= 100 | trees= 20 | 0.4384 | 0.0040
Drucker.AD | leaves= 100 | trees= 20 | 0.4440 | 0.0055
Z&P.S leaves= 100 | trees= 20 | 0.4463 | 0.0051
Z2&P.AD leaves= 100 | trees= 20 | 0.4463 | 0.0039
BR-Bagging | leaves= 100 | trees= 20 | 0.4565 | 0.0073
Bagging leaves= 100 | trees= 20 | 0.4570 | 0.0055
W-Bagging | leaves= 100 | trees= 20 | 0.4641 | 0.0055
LAD_Boost | leaves= 2 trees= 20 | 0.4807 | 0.0045
LS_Boost leaves= 2 trees= 20 | 0.4852 | 0.0041
CVA leaves= 100 | trees= 10 | 0.4877 | 0.0082
RegTree leaves= 100 0.5526 | 0.0054

Table 5.19. Errors of SVM and REx on kin8fh

avg | stdev
CREx-MLP | hidden= 20 | ¢ =2.00 | 0.3939 | 0.0035
SVM v =0.10 C=2 0.3997 | 0.0037
MLP hidden= 5 0.4016 | 0.0102
CREx-Lin e =1.50 | 0.4204 | 0.0033
Linear 0.4210 | 0.0031
MREx-MLP | hidden= 25 | ¢ = 1.00 | 0.7131 | 0.0771
MREx-Lin e =1.00|0.7516 | 0.0814

68

Table 5.20. Errors of Bagging and AdaBoost on kin8nm

avg | stdev
Drucker.AD | leaves= 100 | trees= 20 | 0.5021 | 0.0041
Z&P.AD leaves= 100 | trees= 20 | 0.5099 | 0.0051
W-Bagging | leaves= 100 | trees= 20 | 0.5107 | 0.0066
Z&P.S leaves= 100 | trees= 10 | 0.5230 | 0.0040
Drucker.S leaves= 100 | trees= 20 | 0.5230 | 0.0069
BR-Bagging | leaves= 100 | trees= 20 | 0.5230 | 0.0035
Bagging leaves= 100 | trees= 20 | 0.5232 | 0.0038
LS_Boost leaves= 10 | trees= 20 | 0.5283 | 0.0118
LAD _Boost | leaves= 10 | trees= 20 | 0.5306 | 0.0087
CVA leaves= 100 | trees= 10 | 0.5457 | 0.0058
RegTree leaves= 100 0.5954 | 0.0120

Table 5.21. Errors of SVM and REx on kin8nm

avg | stdev
SVM v =0.10 C= 0.2406 | 0.0029
CREx-MLP | hidden= 30 | ¢ = 1.50 | 0.2551 | 0.0104
MLP hidden= 10 0.3010 | 0.0050
MREx-MLP | hidden= 20 | e = 2.00 | 0.5369 | 0.2862
CREx-Lin e =0.50 | 0.5895 | 0.0063
Linear 0.6156 | 0.0048
MREx-Lin e =1.50 | 0.7665 | 0.0359

69

Table 5.22. Errors of Bagging and AdaBoost on kin8nh

avg | stdev
Drucker.AD | leaves= 100 | trees= 20 | 0.5966 | 0.0113
W-Bagging | leaves= 100 | trees= 20 | 0.5967 | 0.0070
BR-Bagging | leaves= 100 | trees= 20 | 0.5996 | 0.0076
Drucker.S leaves= 100 | trees= 20 | 0.6002 | 0.0116
Z2&P.AD leaves= 100 | trees= 20 | 0.6005 | 0.0095
Bagging leaves= 100 | trees= 20 | 0.6009 | 0.0066
Z&P.S leaves= 100 | trees= 20 | 0.6038 | 0.0121
CVA leaves= 100 | trees=5 | 0.6154 | 0.0093
LS_Boost leaves= 10 | trees= 15 | 0.6243 | 0.0102
LAD_Boost | leaves= 10 | trees= 20 | 0.6275 | 0.0107
RegTree leaves= 60 0.6574 | 0.0105

Table 5.23. Errors of SVM and REx on kin8nh

avg | stdev
CREx-MLP | hidden= 20 | ¢ = 2.00 | 0.4906 | 0.0052
SVM v =0.20 C= 0.4922 | 0.0038
MLP hidden= 10 0.5053 | 0.0096
CREx-Lin e =1.00 | 0.6397 | 0.0068
Linear 0.6478 | 0.0076
MREx-MLP | hidden= 10 | e = 1.50 | 0.8310 | 0.0381
MREx-Lin e =2.00 | 0.8866 | 0.0491

70

Table 5.24. 5 x 2cv F-test of Bagging and AdaBoost on syndata

W|B|B|Z|C|Z/D/A|D|L|R|L
B/Rja|P|V|P|r|B|r|S|T|A
g|Blg|S|A/A|A|R|S|B D
W-Bagging = = =|= =|l=|>|=
BR-Bagging| = =|=|=|=|=|=|=|= =
Bagging| = | = =|l=|=|=|=|=|=|=
Z&P.S| = | = =|l=|=|=|=|=|=
CVA| =|=|=|= = =|=
Z&PAD| = |=|= =|=

Drucker.AD|| =
AdaBoost.R|| =
Drucker.S|| =
LS_Boost)| =
RegTree| < =
LAD Boost]| = |=|=|=|=|=|=|=|=|=|=

Table 5.25. 5 x 2cv F-test of Bagging and AdaBoost on boston

D|Z|Z|BIB{(W|D/A|C|L|L|R

r| PIP/Rla|B|r|B|V|S|A|T
AlS|B|lg|g|S|RIA|B|D

Drucker.AD =|=|= > > > >

Z&P.AD| = =|=|=|=|=|>|=|>|>|>

Z&P.S| == =l=|=|=|>|=|=|=|>

BR-Bagging| = |=| = =|l=|=|=|=|=|=

Bagging| = | = | = =|=|=|=|=|>

W-Bagging| =|=|=|= =|=|= >

Drucker.S|=|=|=|=|= =|= =

AdaBoost.R| < | < |<|=|=| = =|= =

CVA|=|=|=|=|=|=|= =|=

LS Boost| < |<|=|=|=|=|=|=|= =

LAD Boost]| < |<|=|=|= —|=|=

RegTree| < | < | < << =

Table 5.26. 5 x 2cv F-test of Bagging and AdaBoost on calif1000

Z|D
Pir|B
AlA

selip=viive
> < Q
O »=
= O
VI{& W@ =
W »

—

I
I
|

I
I

I

Vil 9 N

7&P.AD,
Drucker.AD|| =
W-Bagging| =

VIV|e & O

|

\Y
I
I

BR-Bagging| = | =

A
I
I
I
I

Bagging
Z&P.S
CVA| =
LAD_Boost]
Drucker.S| = | =
AdaBoost.R|
LS_Boost
RegTree| < | <

I
I
I
I
I
I

ANIAN
VIVIVIVIVIV|V|V

|
I
I

|
AN
I
I
I
I

A
|

I
I
I
I

A
A
A
A
A
A
I

Table 5.27. 5 x 2cv F-test of Bagging and AdaBoost on votes

DIBIB{W|Z|Z|DIC|IL|L|R
rlalR|B|P|P|r|VIAIS|T
Alg|Blg|A|S|S|A|D|B
Drucker.AD S>> |=(>>>|>>|>
Bagging| < =|=|=|>|>|=|>|>|>
BR-Bagging|| < | = =|=|=|=|>|>|>|>
W-Bagging| < =|>(>|>|>|>
Z&PAD|=|=|=| = =l=|=|>|>|>
Z&PS| << | = = > > > >
Drucker.S| < |<|=| < |=|< =|>|=|>
CVAl < =< < =|= =|>|>
LAD Boost]| < | < |<| < |<|<|<|= =|=
LS Boost| < |<|<| < |<|<|=|<|= =
Reglree| < | < | < | < | <[<[] < =

Table 5.28. 5 x 2cv F-test of Bagging and AdaBoost on prostate

LIW|C|Z|B|B|Z|D|R|D|L
A|B|V|Pla|R|P|r|T|r|S
Dlg|A|S|g|BJ|AJA S|B
LAD_Boost = |=|= =|=|= > | =
W-Bagging| = = =l=|=|=|=|>]|=
CVA|| = =|=|=|=|=|=|=
Z&P.S|=|=|= = =|=|=|=
Bagging| =| = | = =|=|=|=|>
BR-Bagging| =| = |=|= =|l=|>|=
Z&PAD| = =|=|=|=|= =|=|=|=
Drucker. AD|=|=|=|=|=|=|= ==
RegTree| = | = |=|=|=|= = =
Drucker.§| < | < |=|= < =
LS_Boost|| = | = <|= =

Table 5.29. 5 x 2cv F-test of Bagging and AdaBoost on birth

B|BIW|L|C|Z|Z|D|D|L|R
Rla|B|S|V|P|P|r|r|A|T
Blg|lg|BIA|S|A|A|S|D
BR-Bagging =|>|= = =|=
Bagging| = =|=|=|=|=|=|=|=
W-Bagging| < | = =|l=|=|=|=|=|=
LS Boost|| =|=| = = ===
CVA|l=|=|=|= —=T=1=1=
Z&PS|=|=|=|= —| ===
Z&PAD|=|=|=|=|= — ==
Drucker. AD|=|=|=|=|=|=|= =
Drucker.S|=|=|=|=|=|=
LAD Boost]| = |=|=|=|=|= =
RegTred| = |=|=|=|=|=|=|=|=|=

Table 5.30. 5 x 2cv F-test of Bagging and AdaBoost on abalone

W Z|LIB|DIL|B|C|D|Z|R
B/P|A|R|r|S|a|V|r|P|T
g|A|DIB/A/B|g|A|S|S
W-Bagging >|i=|>|=|> >Si>|=>
Z&P.AD|| < =l=|=|>|=|>|=|=|>
LAD Boostl| = | = =|=> S|l=|=|>
BR-Bagging| < |=|= =|=|=|>
Drucker. AD|| = |=|= = —|=|=
LS Boost|| < | < | < |= =|=|=|>
Bagging| = |=|=|=|= =|l=|=|=
CVA| < << |=|=|= =|>
Drucker.§| < |=|=|=|=|=|=|= =
Z2&P.S| = | = = =
RegTlree| < | <|<|< < < =

Table 5.31. 5 x 2cv F-test of Bagging and AdaBoost on kin8fm

D/DZ|Z|/L|IB|[LIB{W|C|R
r|r|P|P|S|R|Aja|B|V|T
SIA|A|S|B|B|D|g|gl|A
Drucker.S >0 > > Si=>>|>|>
Drucker.AD|| < > >S|=[>>[>|>
Z&P.AD| < | < = Si=>]>|>|>
Z&PS < |=|= =|> > > > >
LS Boost| =|=|=|= =|> =|>>
BR-Bagging| < | < | < |<|= =|=|>|>|>
LAD Boost]| =|=|=|=|< =|=|>|>
Bagging| < | < | <|<|=|=|= > > >
W-Bagging)| < [< | < | < <|=1|< > | >
CVAl << << |<<<|I<|< >
Reglree| < | < | < | << | << << |I<

Table 5.32. 5 x 2cv F-test of Bagging and AdaBoost on kin8fh

DID|Z|Z|BIBIW|L|L|C|R
r|r|P|P/Rla|B|A|S|V|T
A|S|A|B|g|g|D|B|A
Drucker.S =\|>|>>|>|>>>>|>
Drucker.AD|| = = =|>| > >>|>|>
Z&P.S| < S>> (>>> >
Z&PAD| < |=|= =|(>>|>|>|>|>
BR-Bagging| < |=| < |= =l=[|>|>|>>
Bagging| < | < | < | < > > (>]> >
W-Bagging| < | < | < | < < >|> > >
LAD Boost]| < | < | < |<|<|<]| < =|=|>
LS Boost| < | < |<|<|<|<| < | = =|>
CVAl << << < == >
Reglree| < | < | < | << |<| << <<

Table 5.33. 5 x 2cv F-test of Bagging and AdaBoost on kin8nm

DI Z|IW|Z|D/B/B/[L|L|C|R
r PIB|P|r|R|a|S|A|V|T
AlA|g|S|S|B|g|B|DJA
Drucker.AD =|=[(>|>>|>|=|>|>|>
Z&P.AD| = =|=|=|=|>|=|>|>|>
W-Bagging| =| = Sli=|=|=|=|=|>|>
Z&PY < |=|< =|=|=|=|=|>|>
Drucker.S|| < | = =|=|=|>|>
BR-Bagging| < |=| = | = =|=|>|>
Bagging| < |<|=|=|=|= =|=|>|>
LS Boost| =|=|=|=|=|=|= > >
LAD Boostj| < | < | =|=|=|=|=|= =|>
CVAl << < << <<= >
Reglree| < | < | < | << < << <<

Table 5.34. 5 x 2cv F-test of Bagging and AdaBoost on kin8nh

DIW|/B|D Z|B|Z|C|L|L|R
r BIR|r|Pla|P|V|S|A|T
Alg|B|S|Alg|S|A|B|D
Drucker.AD =|=|=|= =|=|>|=|>
W-Bagging| = =|=|=|=|=|>|>|>|>
BR-Bagging|| = =|=|=|=|>|>|>|>
Drucker.S| =| = =|=|=|>|=|>
Z&PAD|=|=|=|= =|(>|>|>|>
Bagging|=| = |=|=|= =|>|=|>
&P = =|=|=|=|= =|>|=|>
CVAl =< |<|=|<|=|= =|=|>
LS Boost|| < | < |<[<|<|<|< >
LAD Boost] =| < |<|=|<|=|=|=|= >
Reglree| < | < |<|< | << << <<

76

Table 5.35. 5 x 2cv F-test of SVM and REx on syndata

SIM|{C|M|M|C|L
VILIR|R|R|R|i
MIP/M|M|L|L|n

SVM| =[>|>|>|>|>
MLP| = =[>|>|>|>
CREx-MLP| < | = > > (> >
MREx-MLP| < | < | < > > >
MREx-Lin| < | < | < | < =|=
CREx-Lin| < | < | < | < | = >
Linear| < | < | < | < | =|<

Table 5.36. 5 x 2cv F-test of SVM and REx on boston

S|C|IM|C|L|M|M
VIR|L|R|i|R|R
M|M|P|L|n|M|L
SVM = > > > >
CREx-MLP| = =|=|>|>
MLP| =|= > | >
CREx-Lin| < | =|= =|>|=
Linear| < | < | < | = > | =
MREx-MLP| < | < | < |<|< =
MREx-Lin| < |=|=|=|=|=

Table 5.37. 5 x 2¢v F-test of SVM and REx on calif1000

CISIM|C|LIMM

R|{VIL|R|i|R|R

M(M|{P|L{n|M|L

CREx-MLP| = >|I>|> | =
SVM|| = > > >

MLP| = |= =|=|>|=

CREx-Lin| < | < | = =|>|=

Linean| < | < | =|= > | =

MREx-MLP| < | < | < |<|<

MREx-Lin| =|=|=|=|=|=

Table 5.38. 5 x 2cv F-test of SVM and REx on votes

SICIM|C|L|{M|M
VIR|L|R|i|R|R
M|M|P|L|{n|M|L
SVM| =|(=|>|>|>|>
CREx-MLP| = =[>[|>|>|>
MLP| =|= S>> > | >
CREx-Lin| < | < | < > 1> >
Linean < | < | < | < > | >
MREx-MLP| < | < | < |<|< =
MREx-Lin| < | < | < |<|<|=

Table 5.39. 5 x 2cv F-test of SVM and REx on prostate

S|IC|C|L|M|M|M
VIR|R|i|L|R|R
MIM|L|{n|P|L|M
SVM| =[>|>|=|>|>
CREx-MLP| = =|l=|=|>|>
CREx-Lin| < | = =|=|>|>
Linean < | =|= > | >
MLP|=|=|=|= > | >
MREx-Lin| < | < | <|<| < =
MREx-MLP| < | < |<|<|< | =

Table 5.40. 5 x 2¢v F-test of SVM and REx on birth

M{C|L|C|S|M|M
LIR|i|R|V|R|R
P/M|n|LIM|L|M

MLP =|=|=|=
CREx-MLP| = =|= =|=
Linear| = | = ===
CREx-Lin| = | = =|=|=
SVMl| =|=|= =

MREx-Lin| =|=|=|=| =

MREx-MLP| = |=|=|=|=|=

Table 5.41. 5 x 2¢v F-test of SVM and REx on abalone

=
Z < wm
-

CREx-MLP|
SVM|| =

MLP| = |=
CREx-Lin| =
MREx-Lin| = | =|=|= =|=

I
I
I

_U
VIiVIVI|E = Q
-
=
=

A\
A\
A\
I
I

Linear]

MREx-MLP| =|=|=|=|=|=

Table 5.42. 5 x 2¢v F-test of SVM and REx on kin8fm

C|S|M|C|L|{M|M
R|V|IL|R|i|R|R
M{M|P|L|n|L|M
CREx-MLP| >S|>|>[(>>|=
SVM|| < =|>|>|>|=
MLP| < | = > > > | =
CREx-Lin| < | < | < > > | =
Linear| < | < | < | < > | =
MREx-Lin| < | < | < |<| <
MREx-MLP| =|=|=|=|=|=

Table 5.43. 5 x 2¢v F-test of SVM and REx on kin8fh

C|ISIM|C|L|MM
RIV|L|R|i|R|R
M|M|P|L|{n|M|L
CREx-MLP| >S|=(>>|>|>
SVM|| < =[>[|>|>|>
MLP| =| = =|=|>|>
CREx-Lin| < | < | = >\ > >
Linear| < | < | = | < > | >
MREx-MLP| < | < | < |<|< =
MREx-Lin| < | < | < |<|< | =

Table 5.44. 5 x 2cv F-test of SVM and REx on kin8nm

SICIM{M|C|L|M
VIR|L|R|R|i|R
MIM|P|M|L|n|L
SVM| =[>|=|>|>|>
CREx-MLP| = >|=[>|>|>
MLP| < | < =[>|>|>
MREx-MLP| =|=|= =|=|=
CREx-Lin| < | < | < > >
Linean < | < | < | = | < >
MREx-Lin| < | < | < <| <

Table 5.45. 5 x 2¢v F-test of SVM and REx on kin8nh

C|S|M|C|L|{M|M
R|VIL|R|i|R|R
MIM|P|L|{n|M|L
CREx-MLP| =[>|>|>|>|>
SVM|| = >|>|>>] >
MLP| < | < S>> > | >
CREx-Lin| < | < | < >\ > >
Linear| < | < | < | < > | >
MREx-MLP| < | < | < |<|< =
MREx-Lin| < | < | < |<|<|=

81

Table 5.46. Time complexities of evaluation

Parameters Complexity
Linear D
MLP M h.u. (D+3)M
CREx-Lin K exc. (D+3)K +
CREx-MLP M ha., K exc. | (D+3)M+ (D +2)K
MREx-Lin K exc. (D+3)K +2D
MREx-MLP M ha., K exc. | (D+3)M +(D+2)K+ D
SVM L s.v. (D+2)L
RegTree J leaves 1
Mean models K models K
W.Median models | K models 2K

5.7. Complexity Analysis

Table 5.46 shows the time complexities of the produced models for predicting the
output for a single example. Multiplications, divisions and exponentials were counted,
ignoring additive operations. For the regression-tree based models the balanced tree
case of log, J comparisons were approximated as a single multiplication, and similarly
the additions and comparative operations in computing the weighted median were

counted as single multiplicative operation.

Although the complexity expression of the SVM model may appear smaller than
the C-REx models, in practice the number of support vectors is much larger than the
number of REx exceptions. This is primarily because the SVM must use many local
models to construct the rule if it is to use local models for the exceptions. In addition
to the really difficult examples, many others have to be added as the typical ones.
Since REx is able to use a compact global rule, its exceptions are much fewer than the

support vectors of the SVM, on the order or five to five hundred times on our datasets.

Appendix A.5 contains the plots of test errors against time complexity of evalua-

82

error/complexity on kin8fm
0.8

0.7F
<IMREx-MLP

PMREX-Lin
0.6

0.5

error

+RegTree
04

LAD_Boost @ Bagging

03r *Drucker.AD

O
Z&P.S

*Linear ACREX-Lin
0.2

OMLP VCREX-MLP OSVR

01 " " PR | " " PR | " " ool " " PR |
10 10 10° 10 10
complexity (operations)

Figure 5.21. Error and complexity on kin8fm

tion, for C-REx and M-REx with their base models, and also seperately for all families
of algorithms to illustrate the tradeoff between the error and time complexity. An
example is in Figure 5.21. Note that the complexity axis is plotted in logarithmic

scale.

83

6. CONCLUSIONS AND FUTURE WORK

The C-REx version of the proposed REx algorithm was shown to be a successful
machine learning algorithm that produces an intuitive and accurate model by combin-
ing a rule and a set of exceptions. Simple rules are enhanced in necessary regions by
using locally active exceptions. If the data is very simple in most of the input space
but misbehaves in some parts, REx can handle most data with a compact simple rule
and concentrate further only on the anomalous part. Moreover, this structure of the
data is trivially observable from the REx model, as to where the rule acts and what

the exceptions are. The number of exceptions is easily bounded by clustering.

The common trait binding AdaBoost, SVM and REx is that they all exercise se-
lective attention on the training set. They implicitly or explicitly differentiate between
training examples based on a measure of importance. Importance is often in parallel
with the difficulty of learning the example, in other words the degree of change needed
in the model to include that example. The differences lie in how the algorithms assess

and exploit importance.

Our expectation from machine learning algorithms is not always sheer accu-
racy only. Most of the time, better understanding of the data is valuable, and our
importance-guided models allow us a peek into the otherwise black box. Other meth-
ods like MLP or Bagging, successful as they may be, have no such interest in evaluating

the data, and reveal no structural information.

AdaBoost iteratively reweights or relabels examples while adding base models, so
that the difficult examples get a higher weight or label magnitude than others through
the iterations. The easy examples are those that have already been learned, those
that are already predictable with the current model, so their weights or labels are near
zero. As the importance level of an example increases, the algorithm tries harder to
learn that example than others. This information is only used during training and not

explicitly stored, but the each new base model implicitly reflects the importance scores

84

used while adding it.

The Support Vector Machine algorithm directly stores some examples as support
vectors and explicitly constrains its model by them such that when these “important”
examples are correctly predicted, all the other “easy” ones are correct within acceptable
accuracy. Compared to AdaBoost’s continuous weights or labels, SVM’s measure of
importance is polarized, as being a support vector or not. The « values provide some
ordering among the support vectors though, especially by separating as bounded or
unbounded. All support vectors are “important”, but the unbounded are the really

“difficult” ones.

REx makes the clearest distinction by explicitly treating some examples as “ex-
ceptions”. These are the difficult examples, the easy ones being explained by the rule.
REx fixes exceptions to be local factors. This makes intuitive sense because if an ex-
ception has a global effect, then it is not an exception but part of the rule. It also
provides interpretability since thinking in terms of local modifications to a general rule

is natural to the human mind.

Among the algorithms described, REx also happens to be the only one that
can modify a linear rule into a nonlinear model. The linear model is a very simple,
efficient, understandable, and nonparametric model which has a non-iterative analytical
solution as well as trivial differentiability. A solution with such an elegant rule and
local exceptions may be ideal for many problems, a possibility only provided by REx

among these algorithms.

M-REx provides sharper partitioning of data into rule and exception regions,
but obviously requires improvement. Its deficiencies can be more closely examined on

different visualizable datasets and mended accordingly.

The exception consolidation step in REx can be implemented in many other
ways than K-means clustering. Other known clustering methods can be applied and

tested for improvement. The initialization of variances can be made smarter, possibly

85

depending on automated distribution tests.

By clustering, REx also achieves precise control of model complexity, in contrast

to the asymptotic guidance in »-SVM.

An extension of the AdaBoost-SVM-REx comparison should investigate precisely
which examples the different methods emphasize. The degree of similarity between
AdaBoost’s highest weighted examples, support vectors and REx exceptions may shed

further light on the similarities and differences between the algorithms.

To level the differences between types and complexities of base models, utility
measures can be defined to balance model complexity and overall accuracy. These
utility results can also be extended for parallelism, distinguishing parallelizable and

sequential algorithm steps.

APPENDIX A: EXTRA FIGURES

A.1. Base Algorithm Errors

— Linear & MLP
<+ RegTree

test error

5 0 5 10 15 20 25 30 35
hidden units or leaves

Base algorithm errors for syndata

o7
— Linear & MLP.
“+ RegTree
065
[
_ossf
5
" osp
o045
o
s o 5 10 20 25 30 35

15
hidden units or leaves.

Base algorithm errors for calif1000

07
— Linear & MLP.
<+ RegTree

0.6

test error

05

o L L L L L L L),

10 15
hidden units or leaves

Base algorithm errors for votes

— Linear & MLP.
-+ RegTree

test error
°
IS
&
T

-5 0 5 10 15 20 25 30 35
hidden units or leaves

Base algorithm errors for boston

— Linear & MLP
-+ RegTree

test error

-5 0 5 10 15 20 25 30 35
hidden units or leaves

Base algorithm errors for prostate

o
— Linear & MLP
...+ RegTree
18-
16 B
14k : : :
] : : :
3 : B :
r2r ot : :
A i : :
5
ES 1 T
o ‘ ; L L ‘ ‘
-5 0 5 25 30 35

10 15 0
hidden units or leaves

Base algorithm errors for birth

86

Figure A.1. Base algorithm errors

08
— Linear & MLP
... RegTree
07
06
05
s
o
8
04f
03
I L_v,_—x—l
o1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
-5 0 5 Bt 20 25 30 35

0 15
hidden units or leaves

Base algorithm errors for kin8fm

07+

test error
°
&
T

— Linear & MLP.
©:+ RegTree

045

=5 [5 10 15 20 25 30 ES
hidden units or leaves

Base algorithm errors for kin8nm

25
— Linear & MLP
<+ RegTree
2k
15
s
]
8
1k
05
0 . 1 1 1 1 . 1 .
-5 0 5 10 15 20 25 30 35

hidden units or leaves

Base algorithm errors for abalone

075
— Linear & MLP.
< RegTree

o7}
065}
06|

s

S 0551

g

os|

045}

o . I I . I . . ,
£ 0 5 25 30 35

10 15
hidden units or leaves

Base algorithm errors for kin8fh

0751
— Linear & MLP.
-+ RegTree

071

065

test error
°
>
T

055

-5 0 5 10 15 20 25 30 ES
hidden units or leaves.

Base algorithm errors for kin8nh

Figure A.2. Base algorithm errors (continued)

87

A.2. Outputs on syndata

A.2.1. Base Models on syndata
Linear MLP-2

3 4 3 2 1 o 1 2 3 4 5 g 3 2 1 0 1 2 3 4 5
Linear on syndata MLP-2 on syndata

st sk

-10 -10
MLP-5 on syndata MLP-10 on syndata
MLP-15 on syndata MLP-20 on syndata

Figure A.3. Linear and MLP models on syndata

88

2-leaf Regression Tree

-10

2-leaf regression tree on syndata

10-leaf Regression Tree
151

10

10-leaf regression tree on syndata

20-leaf Regression Tree
151

-10

20-leaf regression tree on syndata

5-leaf Regression Tree

b-leaf regression tree on syndata

15-leaf Regression Tree

15-leaf regression tree on syndata

25-leaf Regression Tree

25-leaf regression tree on syndata

Figure A.4. Regression tree models on syndata

89

A.2.2.

C-REx on syndata

CREX-Lin, threshold=2.5 CREX-MLP-2, threshold=1.4

CREx Linear on syndata CREx MLP-2 on syndata

CREX-MLP-5, threshold=1.4 CREX-MLP-10, threshold=1.4

CREx MLP-5 on syndata CREx MLP-10 on syndata

CREX-MLP-15, threshold=1.4 CREX-MLP-20, threshold=1.4

CREx MLP-15 on syndata CREx MLP-20 on syndata

Figure A.5. C-REx without clustering on syndata

90

A.2.3.

C-REx on syndata

MREX-Lin, threshold=1.4

T B S R R B
MREx Linear on syndata
MREX-MLP-5, threshold=1.2
151

MREx MLP-5 on syndata

MREx MLP-15 on syndata

MREX-MLP-2, threshold=1.4

MREx MLP-2 on syndata

MREX-MLP-10, threshold=1.2

MREx MLP-10 on syndata

MREX-MLP-20, threshold=1.2

MREx MLP-20 on syndata

Figure A.6. M-REx without clustering on syndata

91

A.2.4. C-REx with Clustering on syndata

CREx-Lin threshold=1.8, k=10 CREx-MLP-2 threshold=1.4, k=10
15

CREx Linear, K = 10 on syndata CREx MLP-2, K = 10 on syndata

CREx-MLP-10, threshold=1.4, k=10
15

CREx MLP-5, K = 10 on syndata CREx MLP-10, K = 10 on syndata

CREX-MLP-20, threshold=1.4, k=10
15

CREx MLP-15, K = 10 on syndata CREx MLP-20, K = 10 on syndata

Figure A.7. C-REx with clustering on syndata

92

A.2.5. MREx with Clustering on syndata

93

MREx-Lin threshold=1.4, k=10 MREX-MLP-2 threshold=1.4, k=10

\
=5 -4 -3 -2 -1 0 1 2 3 4 5

MREx Linear, K = 10 on syndata MREx MLP-2, K = 10 on syndata

MREx MLP-5, K = 10 on syndata MREx MLP-10, K = 10 on syndata

MREX-MLP-15, threshold=1.4, k=10 MREX-MLP-20, threshold=1.4, k=10
15 151

-10

— IR

-4 -3 -2

-15
=5 5

MREx MLP-15, K = 10 on syndata MREx MLP-20, K = 10 on syndata

Figure A.8. M-REx with clustering on syndata

A.3. Thresholds

A.3.1. CREx Thresholds

syndata CREx-Lin

syndata CREx-MLP 2

8 351
— Exceptions
Test Error
7 — Linear
, o111 -r 1 I -I I
o
st 25}
ab
2F
s Tz Tz E T T T T
150
2F
it na
—_ —— Exceptions
‘- -
ok Error
osf
-1 \\
2 I 1 I . I , I ; i ,
0s 1 15 2 2 4 45 5 55 05 1 15 2 25 35 4 45 5 55

3
threshold

CREx-Lin errors on syndata

syndata CREX-MLP 5

3
threshold

CREx-MLP-2 errors on syndata

syndata CREX-MLP 10

a5 35
—— Exceplions —— Exceptions
Test Error
— MLP-5
3 3F
251 25}
o IIIID I oL
15[15[
1 1
05 osf
05 1 15 2 25 35 a a5 5 55 05 1 15 2 4 45 5 55

3
threshold

CREx-MLP-5 errors on syndata

syndata CREX-MLP 15

3
threshold

CREx-MLP-10 errors on syndata

syndata CREX-MLP 20

45 3sp
Excoptions
o
sk
asp
25¢
b
25f 2r
2r 15}
150
Wb
is
st
o5
05 T 15 2 4 5 B 55 3 1 15 2 4 5 5 55

3
threshold

CREx-MLP-15 errors on syndata

3
threshold

CREx-MLP-20 errors on syndata

Figure A.9. C-REx thresholds on syndata

94

boston CREx-Lin

—

015

L L L L L L L L L ,
0.45 05 055 06 065 07 075 08 08 09 005
threshold

CREx-Lin errors on boston

boston CREX-MLP §

075 08 085 09 095

0.45 05 055 06 065

07
threshold

CREx-MLP-5 errors on boston

boston CREX-MLP 15

L L
0.45 05 055 06 065 07 075 08 08 09 005
threshold

CREx-MLP-15 errors on boston

boston CREx-MLP 2

IR R

L L L L L L L ,
045 05 055 06 065 07 075 08 08 09 095
threshold

CREx-MLP-2 errors on boston

boston CREX-MLP 10

045 05 055 06 065 07 075 08 08 09 095
threshold

CREx-MLP-10 errors on boston

boston CREx-MLP 20

0151

L L L
045 05 055 06 065 07 075 08 08 09 095
threshold

CREx-MLP-20 errors on boston

Figure A.10. C-REx thresholds on boston

95

calif1000 CREx-Lin

— Test
— Linear

threshold

CREx-Lin errors on calif1000

calif1000 CREX-MLP 5

—— Exceptions
— Test

LP-5

2 1
threshold

CREx-MLP-5 errors on calif1000

calif1000 CREX-MLP 15

— Exceptions
— rror

1
threshold

CREx-MLP-15 errors on calif1000

€alif1000 CREX-MLP 2

I 1 1 I I

— Exceptions

threshold

CREx-MLP-2 errors on calif1000

calif1000 CREX-MLP 10

—— Exceptions
— Test Error
LP-10

1
threshold

CREx-MLP-10 errors on calif1000

calif1000 CREX-MLP 20

CREx-MLP-20 errors on calif1000

Figure A.11. C-REx thresholds on calif1000

96

prostate CREx-Lin

xceptions
‘est Error
0.9+ — Linear

threshold

CREx-Lin errors on prostate

prostate CREx-MLP 5

08

06

05r-

—— Exceptions,

03

02r

01 \

08 1 12 14 6 18 2 22

1
threshold

CREx-MLP-5 errors on prostate

prostate CREx-MLP 15

osf i‘i—i’—%\i\{
osf
04
—— Exceptions
Erro
03F
02f
01r \'
I 1 . . I .
08 1 12 1 6 18 2 22

CREx-MLP-15 errors on prostate

prostate CREx-MLP 2

Exceptions
Test Error

threshold

CREx-MLP-2 errors on prostate

prostate CREx-MLP 10

S S B s

—— Exceptions

a 1
threshold

CREx-MLP-10 errors on prostate

prostate CREx-MLP 20

— Exceptions

CREx-MLP-20 errors on prostate

Figure A.12. C-REx thresholds on prostate

98

votes CREx-Lin

—— Exceptions

threshold

CREx-Lin errors on votes

votes CREx-MLP 5

—— Exceptions

— MLP-5

—

11 12 13 14 15 17 18 19 2 21

16
threshold

CREx-MLP-5 errors on votes

votes CREx-MLP 15

16 17 18 19 2 21
threshold

CREx-MLP-15 errors on votes

votes CREx-MLP 2

06

05

H
b
H

04F

03k
—— Exceptions

threshold

CREx-MLP-2 errors on votes

votes CREX-MLP 10

07
—— Exceptions,
Test Error
— MLP-10
061
051
04r
03r
021
01r
P —— .
11 12 13 14 15 16 17 18 19 2 21
threshold

CREx-MLP-10 errors on votes

Votes CREX-MLP 20

07
—— Exceptions
— TestError
— MLP-20

06F

05r

04r

03

02r

[

P e—— .
11 12 13 14 15 16 17 18 19 2 21
threshold

CREx-MLP-20 errors on votes

Figure A.13. C-REx thresholds on votes

bifth CREX-Lin
09
07
06
05
— Exceptions
— Test Ermor
—— Linear
04
03
02
01f \
. . . . : ; .
08 T 12 14 16 18 2 22
threshold
bifth CREX-MLP 5
09
07
06
05
—— Exceptions
— Test Ermor
— M5
04t
03
02
ok \
08 T 12 1 6 18 2 22

a 1
threshold

CREx-MLP-5 errors on birth

birth CREx-MLP 15

09
T %\I—H\—I—I
07
06
05
—— Exceptions
— TestEror
— MLP-15
04
03
02
ok \
I i ,
08 1 12 1 6 18 2 22

4 1
threshold

CREx-MLP-15 errors on birth

birth CREx-MLP 2

— Exceptions
— Test Error
— MLP-2

08 1 12 14 16 18 2 22
threshold

CREx-MLP-2 errors on birth

birth CREX-MLP 10

—— Exceptions
— Test

08 1 12 1
threshold

CREx-MLP-10 errors on birth

birth CREx-MLP 20

— Exceptions
— Test Error
— MLP-20

4 1
threshold

CREx-MLP-20 errors on birth

Figure A.14. C-REx thresholds on birth

99

Kingfm CREx-Lin

0.251

0.2

0.151
—— Exceptions
— Test Error
—— Linear

0.1

0.051

0.4 05 0.6 0.7 0.8 09 1 11
threshold
kin8fm CREx-MLP 5

0.181

o1 1 I

0.141

0.121

0.1
—— Exceptions
— MLP-5

0.081

0.06

0.041

0.021

0.4 0.5 0.6 09 1 11

07 08
threshold

CREx-MLP-5 errors on kin8fm

Kingfm CREx-MLP 15

0.16
o I I I I I
0.12
0.1
—— Exceptions
0.081 — Test Error
—— MLP-15
0.06
0.041
0.021
\Y\ ,
04 05 0.6 09 1 11

0.7 08
threshold

CREx-MLP-15 errors on kin8fm

Kingfm CREx-MLP 2

Exceptions
Test Error
— MLP-2
0051
L I L ,
0.4 05 06 09 1 11

threshold

CREx-MLP-2 errors on kin8fm

kingfm CREx-MLP 10

0251
Exceptions.
Test Error
— MLP-10
02F
015
T I
01r
0.05-
04 05 06 09 1 11

07 08
threshold

CREx-MLP-10 errors on kin8fm

Kingfm CREx-MLP 20

I I I I I

— Exceptions

CREx-MLP-20 errors on kin8fm

Figure A.15. C-REx thresholds on kin8fm

kingfh CREx-Lin

05
04r
0.35[
03
—— Exceptions
0.25F — Test Error
— Linear
0.2
0.15F
[
0.05[
08 1 12 18 2 22
threshold
kingfh CREx-MLP 5
0451
0.35[
03r
0.25F
—— Exceptions
—— MLP-5
021
0.15F
01r
0.05[
08 1 12 18 2 22

14 16
threshold

CREx-MLP-5 errors on kin8fh

kingfh CREx-MLP 15

045
h T 7
0.4 T T
035
03
0251
—— Exceptions
— TestError
— MLP-15
02
015
01
005
I I T . ,
08 1 12 18 2 22

14 16
threshold

CREx-MLP-15 errors on kin8fh

kingfh CREX-MLP 2

(R

e ——F

Exceptions
Test Error

threshold

CREx-MLP-2 errors on kin8fh

kingfh CREX-MLP 10

035
03F
0251
—— Exceptions
— Test Error
— MLP-10
02F
015
01r
005
08 1 12 18 2 22

14 16
threshold

CREx-MLP-10 errors on kin8fh

Kingfh CREX-MLP 20

— Exceptions

14 16
threshold

CREx-MLP-20 errors on kin8fh

Figure A.16. C-REx thresholds on kin8fh

101

kin8nm CREx-Lin

07
06
05
0.4
E
—— Linear
03[
0.2
0.1
08 1 12 14 16 18 2 22
threshold
CREx-Lin errors on kin8nm
kin8nm CREx-MLP 5
0.7
Exceptions
Test Error
e
0.6
05| T I T
0.4F //
0.3
0.2
0.1
08 1 1.2 1. 6 18 2 2.2

a 1
threshold

CREx-MLP-5 errors on kin8nm

Kin8nm CREX-MLP 15

0451
04fF
0351
03 I T
0251
02
—— Exceptions
— Test Error
0151 — MLP-15
01
0051
L L L T ,
0.8 1 12 18 2 22

14 16
threshold

CREx-MLP-15 errors on kin8nm

kingnm CREX-MLP 2
07F

06

05

04F

Test Error

14 16

03k

02k

01f

threshold

CREx-MLP-2 errors on kin8nm

kingnm CREx-MLP 10

=
—

—— Exceptions

14 16 18 2 22
threshold

CREx-MLP-10 errors on kin8nm

Kin8nm CREX-MLP 20

0451
04fF
0351
03 I I
0251
02
Exceptions
Test Error
0151 — MLP-20
01
005
L L L T ,
0.8 1 12 18 2 22

14 16
threshold

CREx-MLP-20 errors on kin8nm

Figure A.17. C-REx thresholds on kin8nm

102

kingnh CREx-Lin

0.7
I I I

05

0.4
—— Exceptions
— Test Error
—— Linear

03

0.2

[y‘

08 1 12 14 16 18 2 22
threshold
CREx-Lin errors on kin8nh
king8nh CREx-MLP 5

0.7

o I’//}//%

04
—— Exceptions
— MLP-5

0.3

0.2

N \

08 1 1.2 1. 6 18 2 2.2

a 1
threshold

CREx-MLP-5 errors on kin8nh

kingnh CREx-MLP 15

0.7

] r/’/i/l

0.5

0.4

03
—Eucepions
= retEmer
— MLP-15

0.2

0.1

\ .
08 1 12 1. 6 18 2 22

CREx-MLP-15 errors on kin8nh

kingnh CREX-MLP 2

07r
T I I

7 /{/

05

04t
— e
— Test Error
— MLP-2

03[

02r

orr \‘

08 1 12 14 16 18 2 22
threshold

CREx-MLP-2 errors on kin8nh

kingnh CREX-MLP 10

07
osf
o4f
—— Exceptions
— Test
— MLP-10
03f
02
T \‘
08 1 12 14 6 18 2 22

1
threshold

CREx-MLP-10 errors on kin8nh

kingnh CREX-MLP 20

07r
06
o5l r/f//l
04r
03[
—Ecepions
- TetEmor
— MLP-20
02r
o \1
. . . ; . ,
08 1 12 1. 6 18 2 22

CREx-MLP-20 errors on kin8nh

Figure A.18. C-REx thresholds on kin8nh

A.3.2.

MREx Thresholds

syndata MREx-Lin

Exceptions
Test Error
45F | — Linear

3
threshold

MREx-Lin errors on syndata

syndata MREX-MLP §

Exceplions
Test Error
45 [— MLP-5

5 3 35
threshold

MREx-MLP-5 errors on syndata

syndata MREx-MLP 15

Exceptions
est Error
— MLP-15

3
threshold

MREx-MLP-15 errors on syndata

syndata MREx-MLP 2

I T IIT I T

—— Exceptions
Error

3
threshold

MREx-MLP-2 errors on syndata

syndata MREx-MLP 10

—— Exceptions
— Test Error

451 | — mLP-10

aF

35}

ab

25}

e

150

1 I1T I I I I I I

osf

05 1 15 2 25 35 4 45 5 55

3
threshold

MREx-MLP-10 errors on syndata

syndata MREx-MLP 20

— Exceptions
— TestError
asf — MLP-20

3
threshold

MREx-MLP-20 errors on syndata

Figure A.19. M-REx thresholds on syndata

104

boston MREx-Lin

Exceptions
Test Error
—— Linear

0.6+

05F

04f

03r

0.2

o1l \

0.45 05 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
threshold
MREx-Lin errors on boston
boston MREx-MLP 5
0.7
Exceptions
Test Error
e

0.6

05+

04

0.3 I I
0.2

o1f k

0.45 05 055 06 065 07 075 08 085 09 095
threshold

MREx-MLP-5 errors on boston

boston MREX-MLP 15

o7
— Exceptions
— TestError
— MLP-15

osf

osf

04f

02f
o1 \

. I . I . 1 . I .]
045 05 055 06 065 07 075 08 08 09 095

threshold

MREx-MLP-15 errors on boston

boston MREx-MLP 2

07r

ceptions

st Error

— MLP-2

06
05
04r
03
02r
[\

. ,
0.45 05 055 06 0.65 0.7 075 08 0.85 0.9 0.95

threshold

MREx-MLP-2 errors on boston

boston MREXx-MLP 10

0.45 05 055 06 065 075 08 085 09 095

07
threshold

MREx-MLP-10 errors on boston

boston MREX-MLP 20

07
—— Exceptions.
— Test Error
— MLP-20
06
05
04
osf T I I
02
o1r \
0.45 05 0.55 06 0.65 0.7 0.75 08 0.85 09 0.95

threshold

MREx-MLP-20 errors on boston

Figure A.20. M-REx thresholds on boston

105

106

calif1000 MREx-Lin

Exceptions
Test Error
— Linear

140
120

s
0.8
0.6

T z E3 ES B
0.4
02
h T — ,
09 1 11 14 15 16

threshold

MREx-Lin errors on calif1000

calif1000 MREX-MLP §
251

2 13
threshold

MREx-MLP-5 errors on calif1000

calif1000 MREx-MLP 15

251
Exceptions
Test Error
— MLP-15
s
150
1 \
05
I I I I
— ,
09 1 11 14 15 16

12 13
threshold

MREx-MLP-15 errors on calif1000

calif1000 MREx-MLP 2

—— Excepiions
— TestError
3f [—MLP-2

threshold

MREx-MLP-2 errors on calif1000

calif1000 MREX-MLP 10
5
—— Exceptions

12 13
threshold

MREx-MLP-10 errors on calif1000

calif1000 MREx-MLP 20

20
Excepions

150
b

05
ok

“05 L L L L L L \
0.9 1 11 14 15 16

12 13
threshold

MREx-MLP-20 errors on calif1000

Figure A.21. M-REx thresholds on calif1000

107

prostate MREx-Lin
091

08|
07t
wof I
05|

04

— Exceptions
— Test Error
031 — Linear

02k

01f
m ,
1 6

threshold

MREx-Lin errors on prostate
prostate MREx-MLP 5

08

07r

061

05F

—— Exceptions
0ar — Test

LP-5

03k

02F

14 16
threshold

MREx-MLP-5 errors on prostate

prostate MREXx-MLP 15
08

07k
06
05F

— Exceptions
04fF — TestEn

03F
02k

14 16
threshold

MREx-MLP-15 errors on prostate

prostate MREX-MLP 2

09
08
07f
o | I
05
04
Exceptions
Test Eror
03 — MLP-2
02
01 \
. . . . " .
08 1 12 14 16 18 2 22

threshold

MREx-MLP-2 errors on prostate

prostate MREX-MLP 10

08
07
06
05r-
—— Exceptions.
0al — Test Error
— MLP-10
03
02r
01 \
08 1 12 14 6 18 2 22

1
threshold

MREx-MLP-10 errors on prostate

prostate MREx-MLP 20

o9r
o8|
o7}
06|
os|
04
—— Exceptions
— TestError
03 — MLP-20
02
01 x
I . . . i ,
08 1 12 1 6 18 2 22

MREx-MLP-20 errors on prostate

Figure A.22. M-REx thresholds on prostate

votes MREx-Lin

—— Exceptions
—— Test Error
08l — Linear
o1
0.6
05
04
03
02
0
e ,
11 12 13 14 15 16 1.7 18 19 2 21
threshold
MREx-Lin errors on votes
votes MREx-MLP 5
0.7
0.6
05F
I T T I I
04
0.3
—— Exceptions
—— Test Error
— MLP-5
0.2
0.1
- ,
11 12 13 14 15 16 17 18 19 2 21
threshold

MREx-MLP-5 errors on votes

votes MREX-MLP 15

07
06
05
04 I I I I I
03
—— Exceptions
— Test Error
— MLP-15
02
01
i e ,
11 12 13 14 15 16 17 18 19 2 21
threshold

MREx-MLP-15 errors on votes

votes MREX-MLP 2

— Exceptions
— Test Error
— MLP-2

11 12 13 14 15 16 17 18 19 2 21
threshold

MREx-MLP-2 errors on votes

votes MREx-MLP 10

07

06

05

0.4

03[
— Exceptions
— Test Error
— MLP-10

02

01f

e — ,
11 12 13 14 15 16 17 18 19 2 21
threshold

MREx-MLP-10 errors on votes

votes MREX-MLP 20

07
— Exceptions
— Test Error
— MLP-20
06

03F
02
01
e — .
11 12 13 14 15 16 17 18 19 2 21
threshold

MREx-MLP-20 errors on votes

Figure A.23. M-REx thresholds on votes

108

birth MREx-Lin

0.9

o1

0.6

05
—— Exceptions
— Test Error
—— Linear

04

03

02

oal \

08 1 12 14 16 18 2 22
threshold
MREx-Lin errors on birth
birth MREx-MLP 5

0.9

0.7

0.6

05
—— Exceptions,
— MLP-5

04

0.3

0.2

oal \

08 1 1.2 1. 6 18 2 2.2

a 1
threshold

MREx-MLP-5 errors on birth

birth MREX-MLP 15

09
T H\%—%\H
07
06
05
—— Exceptions
— TestEror
— MLP-15
04
03
02
oal \
I i ,
08 1 12 1 6 18 2 22

4 1
threshold

MREx-MLP-15 errors on birth

bith MREX-MLP 2

— Exceptions
— Test Error
— MLP-2

08 1 12 14 16 18 2 22
threshold

MREx-MLP-2 errors on birth

birth MREX-MLP 10

—— Exceptions
— Test

08 1 12 1
threshold

MREx-MLP-10 errors on birth

bith MREX-MLP 20

— Exceptions
— TestErro

L L L L L i ,
08 1 12

4 1
threshold

MREx-MLP-20 errors on birth

Figure A.24. M-REx thresholds on birth

109

Kingfm MREx-Lin

Exceptions
Test Error
— Linear

threshold

MREx-Lin errors on kin8fm

kingfm MREX-MLP 5

Exceptions.
Test Error
09F | — MLP-5

07 08 09 1 11
threshold

MREx-MLP-5 errors on kin8fm

Kingfm MREX-MLP 15

Exceptions
Test Error
08| [— MLP-15

0.7 08 09 1 11
threshold

MREx-MLP-15 errors on kin8fm

Kingfm MREX-MLP 2

091
xceptions
st Error
08 [— MLP-2
07
06
05
0.4
03
02
01
— L L \
0.4 05 0.6 07 08 0.9 1 11

threshold

MREx-MLP-2 errors on kin8fm

kingfm MREX-MLP 10

0.4 05 0.6 7 08
threshold

MREx-MLP-10 errors on kin8fm

kingfm MREX-MLP 20
—— Excepiions
— Test Error

| [=—=mLP-20

0.4 05 0.6 07 08
threshold

MREx-MLP-20 errors on kin8fm

Figure A.25. M-REx thresholds on kin8fm

110

kingfh MREx-Lin

Exceptions

e

08 1 12
threshold

MREx-Lin errors on kin8fh

kingfh MREX-MLP 5

Exceptions
Test Error
08F — MLP-5

14 16
threshold

~

18

MREx-MLP-5 errors on kin8fh

kingfh MREx-MLP 15

07
06
05
04 kS z
03
—— Exceptions
— Test Error
— MLP-15
02
01
L L L ,
08 1 12 18 2 22

14 16
threshold

MREx-MLP-15 errors

on kin8fh

kingfh MREX-MLP 2

xceptions
st Error
08} [— MLP-2

08

threshold

MREx-MLP-2 errors on kin8fh

kingfh MREX-MLP 10

o8-
07
o6
[
0.4 I I I
o3r — Test Error
— MLP-10
02
01f
08 1 12 18 B 22

4 16
threshold

MREx-MLP-10 errors

kingfh MREX-MLP 20

e

on kin8fh

— Exceptions
— Test Error
— MLP-20

08 1 12 14 16
threshold

MREx-MLP-20 errors

on kin8fh

Figure A.26. M-REx thresholds on kin8fh

111

Kingnm MREx-Lin

08
’ F/M
S

06
05

—— Exceptions
0ar — TestError

— Linear
03
02
01

x\q ,
08 1 12 14 16 18 2 22
threshold
Kingnm MREX-MLP 5

09
08F
07
06
05 T I I
0ar

—— Exceplions

— TestError
0.3 — MLP-5
02
01

08 1 12 18 2 22

14 16
threshold

MREx-MLP-5 errors on kin8nm

kingnm MREx-MLP 15

08
i ML%
os|
—— Exceptions
— Test Error
08 — MLP-15
0af
03 T T T
02
01
. . n . ,
08 T 12 18 2 22

14 16
threshold

MREx-MLP-15 errors on kin8nm

Kingnm MREx-MLP 2

08r
T g///‘E///I
H :
06
051
— Excepton
04r — Test Error
— MLP-2
03r
0.2
0.1
08 1 12 14 16 18 2 22

threshold

MREx-MLP-2 errors on kin8nm

kingnm MREX-MLP 10

08
06

08 1 12 4 16
threshold

MREx-MLP-10 errors on kin8nm

Kin8nm MREX-MLP 20

—— Exceptions

0.2
0.1
x . ,
08 1 12 18 2 22

14 16
threshold

MREx-MLP-20 errors on kin8nm

Figure A.27. M-REx thresholds on kin8nm

kingnh MREx-Lin

0.8
o %/T/’{
I

0.6
05

—— Exceptions
0.4 — Test Error

—— Linear
0.3
0.2
oL \

, . . " n ,
08 1 12 14 16 18 2 22

threshold

MREx-Lin errors on kin8nh

kingnh MREX-MLP 5

08

“r }—/’f/{

osf x x =

05
—— Exceptions

04r — TestError
—— MLP-5

03

0.2

" \,‘\‘

0.8 1 12 1 6 18 2 22

a 1
threshold

MREx-MLP-5 errors on kin8nh

kingnh MREX-MLP 15

08
0.6
05 I I T
04r
—— Exceptions
03 — Test Error
—— MLP-15
0.2
* \\
08 1 12 1 6 18 2 22

MREx-MLP-15 errors on kin8nh

kingnh MREX-MLP 2

08r
orr E/%/{
I I
06
051
— Excepton
04r — Test Error
— MLP-2
03r
0.2
o \'\‘
08 1 12 14 16 18 2 22

threshold

MREx-MLP-2 errors on kin8nh

kingnh MREX-MLP 10

08
o }/{/—/{
06
05
04

L — Excepions
03 — Test Error

— MLP-10
02r
o1r \\
08 1 12 14 16 18 2 22
threshold

MREx-MLP-10 errors on kin8nh

Kingnh MREX-MLP 20

08r
o E///{‘I
06
0s T I I
04r

| — e
03 —— Test Error

— MLP-20
0.2
0.1
x’\ ‘
1. 6

08 1 12

MREx-MLP-20 errors on kin8nh

Figure A.28. M-REx thresholds on kin8nh

A.3.3. C-REx Thresholds with Clustering

114

syndata CREX-MLP 5 k=5

— TestError
—

P-5

—
—

60

— Test Error
— MLP-5

095 1 105 11 115 12 125
threshold

CREx-MLP-5 on syndata, K = 0.01NV

syndata CREX-MLP 5 k=25

200

100

09

095 105 11 115 12 125

1
threshold

CREx-MLP-5 on syndata, K = 0.06N

syndata CREX-MLP 5 k=50

— Test Error
— MLP-5
L L L L T T

0.8

0.85

09

,
5 1 1.05 11 115 12 1.25
threshold

CREx-MLP-5 on syndata, K = 0.1N

boston CREX-MLP 2 k=2

L — TestErmor
034 — mLp-2

o. L L L L
0.05 01 0.15 02

L
0.25 03 0.35 0.4 0.45
threshold

CREx-MLP-2 on boston, K = 0.01NV

boston CREX-MLP 2 k=12

— TestErmor
034 — MLP—2

“0.05 01 0.15 02 0.25 03 035 0.4 0.45
threshold

CREx-MLP-2 on boston, K = 0.05NV

boston CREX-MLP 2 k=25

| [TestEror
03 | — mip-2

o. L L L L
0.05 01 0.15 02

L L L ,
03 0.35 0.4 045

0.25
threshold

CREx-MLP-2 on boston, K = 0.1N

Figure A.29. C-REx thresholds with clustering on syndata and boston

115

0.4

037

calif1000 CREX-MLP 5 k=5

— Test Error
— MLP-5

09

threshold

CREx-MLP-5 on calif1000, K = 0.01N

0.4t

0.37

calif1000 CREX-MLP 5 k=25

— Test Error
— MLP-5

09

12
threshold

CREx-MLP-5 on calif1000, K = 0.05N

0.4

037

calif1000 CREx-MLP 5 k=50

— Test Error
— MLP-5

09

12
threshold

CREx-MLP-5 on calif1000, K = 0.1N

votes CREx-Lin k=15

0.495

0.485F

0475

threshold

CREx-Lin on votes, K = 0.01NV

votes CREx-Lin k=77
0.495

0.485F

0475

0.465 L L L
11 12 13 14

15 16 17 18 19
threshold

CREx-Lin on votes, K = 0.06N

votes CREx-Lin k=155
0495

0.485F

0475

15
threshold

CREx-Lin on votes, K = 0.1N

Figure A.30. C-REx thresholds with clustering on calif1000 and votes

116

prostate CREx-MLP 20 k=1

0.9 1 11 12 13 14 15 16 17 18 19
threshold

CREx-MLP-20 on prostate, K = 0.01N

prostate CREx-MLP 20 k=9

— Test Eror
— MLP-20

0.9 1 11 12 13 14 15 16 17 18 19
threshold

CREx-MLP-20 on prostate, K = 0.05N

prostate CREx-MLP 20 k=18

07
— TestEror
— MLP-20
068
066
064
062]
06
058
o. L L L L L L L L L ,
0.9 1 11 12 13 15 16 17 18 19

14
threshold

CREx-MLP-20 on prostate, K =0.1N

abalone CREX-MLP 5 k=20

0.445,
2

4 a5
threshold

CREx-MLP-5 on abalone, K = 0.01NV

abalone CREX-MLP 5 k=104
0485

0.48f
0475}

0.47f

0.445,
2

4 a5
threshold

CREx-MLP-5 on abalone, K = 0.06N

abalone CREX-MLP 5 k=208
0485

— Test Error

— MLP-5

0445 L L L L L L L T ,
2 5 55 6 65

4 45
threshold

CREx-MLP-5 on abalone, K = 0.1N

Figure A.31. C-REx thresholds with clustering on prostate and abalone

117

birth CREx-MLP 2 k=2

074 L L L L L L . ,

threshold

CREx-MLP-2 on birth, K = 0.01N

birth CREx-MLP 2 k=12

Test Error
MLP-2

09 1 11 12 13 14 15 16 17 18 19
threshold

CREx-MLP-2 on birth, K = 0.056N

birth CREx-MLP 2 k=24
1

— Test Ermor
— MLP-2

0.9+

08

07 L L L L L L L L L ,
09 1 11 12 13 15 16 17 18 19

14
threshold

CREx-MLP-2 on birth, K =0.1N

Kingfm CREX-MLP 5 k=40

0151 — TestError
— MLP-5

0135 I’/JI/—’{—H

L L L L L L L ,
045 05 055 06 065 07 075 08 08 09 095
threshold

CREx-MLP-5 on kin8fm, K = 0.01V

kingfm CREX-MLP 5 k=204

0as} — TestError
— MLP-5

045 05 055 06 065

07 075 08 08 09 095
threshold

CREx-MLP-5 on kin8fm, K = 0.05N

Kingfm CREX-MLP 5 k=409

0151 — TestErmor
— MLP-5

[FESS }/%/_/%\{7/{

01 L L L L L L L L L ,
045 05 055 06 065 07 075 08 08 09 095
threshold

CREx-MLP-5 on kin8fm, K = 0.1N

Figure A.32. C-REx thresholds with clustering on birth and kin8fm

118

Kingfh CREx-MLP 5 k=40

threshold

CREx-MLP-5 on kin8fh, K = 0.01V

kingfh CREX-MLP 5 k=204

0.4 06 08 1 12 14 16 18 2 22 24
threshold

CREx-MLP-5 on kin8fh, K = 0.05N

kingfh CREx-MLP 5 k=409

— TestEror
— MLP-5

L L L L L ,
16 18 2 22 24

o. L L L L
0.4 06 08 1 12 14
threshold

CREx-MLP-5 on kin8fh, K = 0.1N

Kin8nm CREX-MLP 5 k=40

AL

— Test Error
— MLP-5

threshold

CREx-MLP-5 on kin8nm, K = 0.01V

kin8nm CREx-MLP 5 k=204

N e

— Test Error
— MLP-5

036

16 18 2 22 24

0.4 06 0.8 1 12 14
threshold

CREx-MLP-5 on kin8nm, K = 0.05N

Kingnm CREX-MLP 5 k=409

AL

— Test Error
— MLP-5

14
threshold

CREx-MLP-5 on kin8nm, K = 0.1N

Figure A.33. C-REx thresholds with clustering on kin8fh and kin8nm

119

kingnh CREx-MLP 10 k=40

— TestEror
— MLP-10

o. L L L L L L ,

threshold

CREx-MLP-10 on kin8nh, K = 0.01N

kinnh CREx-MLP 10 k=204

— Test Eror
— MLP-10

osf }\f/

08 1 12

14 16
threshold

CREx-MLP-10 on kin8nh, K = 0.05N

kingnh CREx-MLP 10 k=409

— TestEror
— MLP-10

o. L L L L L L ,

14 16
threshold

CREx-MLP-10 on kin8nh, K = 0.1N

Figure A.34. C-REx thresholds with clustering on kin8nh

120

A.3.4. M-REx Thresholds with Clustering

syndata MREX-MLP 5 k=5

— Test Eror
— MLP-5

ast

350

250

2 L L L L L L ,
0.75 08 08 09 095 105 11 115 12 125

1
threshold

MREx-MLP-5 on syndata, K = 0.01N

syndata MREX-MLP 5 k=25

— Test Error
— MLP-5

ar

281

260

244

220

2 L L L L L L L L ,
0.75 08 085 09 095 1 105 11 115 12 125
threshold

MREx-MLP-5 on syndata, K = 0.05N

syndata MREx-MLP 5 k=50
120

— Test Error
— MLP-5

10

sl

" L L L L L L L L L ,
075 08 08 09 0.95 1 1.05 11 115 12 1.25
threshold

MREx-MLP-5 on syndata, K = 0.1N

boston MREx-MLP 2 k=2

— Test Error
MLP-2

°
2
—

I I 1

03 L L L L L L L ,
0.05 0.1 0.15 0.2 03 035 0.4 0.45

0.25
threshold

MREx-MLP-2 on boston, K = 0.01N

boston MREx-MLP 2 k=12

251
— Test Error
— MLP-2
s
150
b
05
T T E3 T
0.05 0.1 0.15 0.2 025 03 035 0.4 0.45
threshold

MREx-MLP-2 on boston, K = 0.06N

boston MREx-MLP 2 k=25

3
— Test Eror
— MLP-2
250
s
150
1k
05
ES ES E3 S
L L L L L L L ,
0.05 0.1 0.15 0.2 0.25 03 035 0.4 0.45
threshold

MREx-MLP-2 on boston, K = 0.1N

Figure A.35. M-REx thresholds with

clustering on syndata and boston

121

calif1000 MREX-MLP 5 k=5

— Test Error
— MLP-5

S
—
]

I I

—

L
0.9 1 11 12 13 14 15
threshold

MREx-MLP-5 on calif1000, K = 0.01N

calif1000 MREX-MLP 5 k=25

— Test Error
— MLP-5

°
2

—

]

I I

—

12 13 14 15
threshold

MREx-MLP-5 on calif1000, K = 0.05N

calif1000 MREX-MLP 5 k=50

11p
— Test Error
— MLP-5
|
0.9
0.8
0.7
0.6
0.5
e O s s S
0.9 1 11 13 14 15

12
threshold

MREx-MLP-5 on calif1000, K = 0.1N

votes MREx-Lin k=15

— TestEror
— Linear

threshold

MREx-Lin on votes, K = 0.01N

votes MREx-Lin k=77

— Test Error
— Linear

°
@
H

ES E3

H

11 12 13 14 15 16 17 18 19
threshold

MREx-Lin on votes, K = 0.06N

votes MREx-Lin k=155

— TestEror
— Linear

05 ES ES E3

H

04 L L L L L L L ,
16 17 18 19

15
threshold

MREx-Lin on votes, K = 0.1N

Figure A.36. M-REx thresholds with clustering on calif1000 and votes

122

prostate MREX-MLP 20 k=1

— Test Error
07 — MLP-20

055 L L L L
09 1 11 12 13

14 15 16 17 18 19
threshold

MREx-MLP-20 on prostate, K = 0.01N

prostate MREX-MLP 20 k=9

180
estEror
MLP-20

160

14t

120

b

08 \I

o 1 I

09 1 11 12 13 14 15 16 17 18 19
threshold

MREx-MLP-20 on prostate, K = 0.0bN

prostate MREX-MLP 20 k=18

— Test Ermor
— MLP-20

MREx-MLP-20 on prostate, K = 0.1N

abalone MREX-MLP 5 k=20

— Test Error
— MLP-5

4 45
threshold

MREx-MLP-5 on abalone, K = 0.01N

abalone MREX-MLP 5 k=104
8-

7k

6k

— Test Error
— MLP-5

4 45
threshold

MREx-MLP-5 on abalone, K = 0.05N

abalone MREX-MLP 5 k=208

— TestEror
— MLP-5

100

MREx-MLP-5 on abalone, K = 0.1N

Figure A.37. M-REx thresholds with clustering on prostate and abalone

bith MREX-MLP 2 k=2

o. L L L L L L L L ,
0.9 1 11 12 13 14 15 16 17 18 19

threshold

MREx-MLP-2 on birth, K = 0.01N

birth MREX-MLP 2 k=12

09 1 11 12 13 14 15 16 17 18 19
threshold

MREx-MLP-2 on birth, K = 0.06N

birth MREX-MLP 2 k=24

22r
— Test Error
— MLP-2
2F
180
160
14F
120
. \I
08
I I T I 1
o. L L L L L L L L L ,
0.9 1 11 12 13 14 15 16 17 18 19
threshold

MREx-MLP-2 on birth, K = 0.1N

Kingfm MREX-MLP 5 k=40

o

est Error
LP-5

=

1k
osk H'//’/

06

0.4

02

L L L L L L L L L ,
0.45 05 055 06 065 07 075 08 08 09 095
threshold

MREx-MLP-5 on kin8fm, K = 0.01N

kingfm MREX-MLP 5 k=204

Test Eror
MLP-5

045 05 o055 06 065 07 075 08 08 09 095
threshold

MREx-MLP-5 on kin8fm, K = 0.05N

Kingfm MREX-MLP 5 k=409
250

— Test Error
— MLP-5

o L L L L L L L L L ,
045 05 055 06 065 07 075 08 08 09 0.95
threshold

MREx-MLP-5 on kin8fm, K = 0.1N

Figure A.38. M-REx thresholds with clustering on birth and kin8fm

124

Kingfh MREX-MLP 5 k=40

50
ab
s
s
1k
ok
— TestEror
— MLP-5
- L L I I L L L L L \
0.4 06 08 1 12 14 16 18 2 22 24

threshold

MREx-MLP-5 on kin8fh, K = 0.01N

kingfh MREX-MLP 5 k=204

— Test Error
— MLP-5

0.4 0.6 08 1 12 14 16 18 2 22 24
threshold

MREx-MLP-5 on kin8fh, K = 0.05N

kingfh MREX-MLP 5 k=409

— Test Error
— MLP-5

L L L L L L L L L \
04 0.6 08 1 12 16 18 2 22 24

14
threshold

MREx-MLP-5 on kin8fh, K =0.1N

Kin8nm MREX-MLP § k=40

6
— Test Error
— MLP-5

sF

ab

3l

2

s

L L L L L L L L L)
04 06 0.8 1 12 14 16 18 2 22 2.4

threshold

MREx-MLP-5 on kin8nm, K = 0.01N

kin8nm MREX-MLP 5 k=204

.
— Test Error
— mips

sk

ok

b

A

1k T T
1

04 06 0.8 1 12 14 16 18 2 22 24
threshold

MREx-MLP-5 on kin8nm, K = 0.05N

Kin8nm MREX-MLP 5 k=409

— Test Error
— MLP-5

L L L L L L L L
04 0.6 08 1 12 16 18 2 22 24

14
threshold

MREx-MLP-5 on kin8nm, K = 0.1N

Figure A.39. M-REx thresholds with clustering on kin8fh and kin8nm

125

kingnh MREX-MLP 10 k=40

— Test Error
— MLP-10

°
el
I

o

threshold

MREx-MLP-10 on kin8nh, K = 0.01N

kin8nh MREX-MLP 10 k=204
350

— Test Error
— MLP-10

el
~

14 16
threshold

MREx-MLP-10 on kin8nh, K = 0.05N

kingnh MREX-MLP 10 k=409

— Test Error
— MLP-10

H

T T

04 L L L L L
12

®

14 16
threshold

MREx-MLP-10 on kin8nh, K = 0.1N

Figure A.40. M-REx thresholds with clustering on kin8nh

A.4. Bagging and AdaBoost Errors

126

151
RegTree
Bagging 120
— - Drucker.AD RegTree
14F — LS_Boost —_ ing
. 115} L= LS Boost
‘
13f K
12f
11f
4
091
0 5 10 15 20 25 25
Boosting on syndata, 5-leaf
048 0441
RegTree
Bagging
- L — - Drucker.AD
0.46 0.42 — . LS_Boost
044 04k
0.42[0.38[
04r 0.36[
0.38[0.34
0.36 0.32
0.34 0.3
032 ' 028
D 1
— LS Boost 1
. ‘ ‘ ‘ ‘ o ‘ ‘ ‘ ‘
o 5 10 15 20 25 o 5 10 15 20 25
Boosting on boston, 5-leaf Boosting on boston, 15-leaf
062 06
. T T‘ RegTree
| T . . Bagging
06k . ! T N osslk ~ - DruckerAD
: . : - ,: - - . T - LS_Boost
! i e , i i
0581 e s | N !
i | i = 056] i
— ! :
056 * §
054
0.54
0.52
0.52
0.5
05F -
‘
| 0.48[
0.48[1
L
! ! ! 0461
0.46 Ba ; | | !
— - Drucker.AD .
- LS_Boost
0.44 L . L ! 0.44 !
0 5 10 15 20 25 0 25

Boosting on calif1000, 5-leaf Boosting on calif1000, 15-leaf

Figure A.41. Bagging and AdaBoost on syndata, boston and calif1000

2r 2r
RegTree
Bagging
= - Drucker.AD
18 - LS_Boost 181
RegTree
L L Bagging
16 16 - - DruckerAD
- LS_Boost
141 14r
12r
£
0.8
06
0.4
0
0.7
RegTree
Bagging
Drucker.AD
- LS_Boost T
065 .
|
|
‘
:
06 :
,
‘
‘
1
0.55
05
‘,
0.45 -
0 5 10 15 20
Boosting on votes, 5-leaf
l4r- 15-
131 14r
RegTree RegTree
L Bagging L Bagging
12 - - Drucker.AD 3 ~ - DruckerAD
— . LS_Boost - LS_Boost
11 12r
ir 11r
0.9 1+
0.8 091
0.7 08
0 5 10 15 20 25 0 5 10 15 20 25
Boosting on birth, 5-leaf Boosting on birth, 15-leaf

Figure A.42. Bagging and AdaBoost on prostate, votes and birth

128

08
0751
.
| -
L
07 Pl
T -7 !
P L
PR
0.65 T I
[Pk ~ LS_Boost
-1
7.7 L
o6 - ¢ -
]
ossr s ! 1 T 1
' e Lo
‘, 1 1 1
05| i L B
045 , . . . ,
o 5 10 15 20 25
Boosting on abalone, 5-leaf
0751
orr 1’#1 =S 1
0651 S
N & ‘\\\ .
061 N DTS T
. LT
: el
055 \\ 1
\
-
05| o
N
0.451 \\
04 R -~
0351 Tty
o. ,
0 5 10 15 20 25
Boosting on kin8fm, 2-leaf
0751
.
0.7 AN { T T I
T
o
I ! S~a
065 kN * R
\ - \\\\\ T
\ Srel_ 1
\ H -7
0.6 N 1
A
N
\\
0551 N
N RegTree
N — Bagging
Fo ~ - Drucker.AD
Trsl - LS
05 el
045 , . . . ,
o 5 10 15 20 25

Boosting on kin8fh, 2-leaf

RegTree

Bagging

~ - DruckerAD
- LS_Boost

RegTree
Bagging

~ - Drucker.AD
LS_Boost

Boosting on kin8fh, 10-leaf

Figure A.43. Bagging and AdaBoost on

abalone, kin8fm and kin8fh

129

L T T T T T
R ==k
. |
T I {\
},\
.
t N
N RegTree
N Bagging
g — - Drucker.AD
1 - LS_Boost
L DN
N
N
- e
[N
~ \"
—— el
. -
L L L L y
5 10 15 20 25
L N
T
\‘\ RegTree
L AN Bagging
; < — - Drucker.AD
L N
Ni
. .
L < i -
1, N !
<
S i
1 -
L i
i
. i

Boosting on kin8nh, 2-leaf

RegTree
Bagging

. - - Drucker.AD
M - LS_Boost

RegTree

Bagging

~ - DruckerAD
- LS_Boost

Boosting on kin8nh, 10-leaf

Figure A.44. Bagging and AdaBoost on kin8nm and kin8nh

130

A.5. Time Complexities

CREX error/complexity on syndata
35

Lin

%CREX—Lin

25

error
N
T

Ler REX-MLP-5

%REXMLPlO %CREX*MLP*lS

MLP—SI
MLP—lOI MLP*ISI

05 | | | | |]
0 20 40 60 80 100 120

complexity (operations)

Figure A.45. Error/Complexity of C-REx on syndata

MREX error/complexity on syndata

35-
[Lin
It
25F MREXx-Lin
" MREx-MLP-15
[}
MREX-MLP-5
151
MREx-MLP-10
MLP-5
MLP-10 MLP-15
05 L L L L L I}
0 50 100 150 200 250 300

complexity (operations)

Figure A.46. Error/Complexity of M-REx on syndata

0.4

0.38

0.36

0.34

error

0.32

0.3

0.28

0.26

CREX error/complexity on boston

[} Lin

CREx-Lin

MLP-2
REX-MLP-2
L CREXx-MLP-10
MLP-5
CREX-MLP-5

L MLP-10

Il Il Il Il Il Il Il Il J
0 100 200 300 400 500 600 700 800 900

complexity (operations)

Figure A.47. Error/Complexity of C-REx on boston

error

o

09r
MREX-MLP-2
0.8+ MREXxALin
MREx-MLP-10

0.7

0.6

0.5F

0.4

Lin
0.3+ MLP-2
MLP-5 MLP-10
Il Il Il J

MREX error/complexity on boston

MREX-MLP-5

0.2
0

50 100 150 200 250 300 350 400 450

complexity (operations)

Figure A.48. Error/Complexity of M-REx on boston

131

error

Figure

error

0.46

0.45

0.44

0.43

0.42

0.41

0.4

0.39

0.38

0.37
0

11p

0.9r

CREX error/complexity on calif1000

Lin

REx-Lin

MLP-5

CREX-MLP-20
MLP-20

CREx-MLP-5
| | | | | | | |]

100 200 300 400 500 600 700 800 900
complexity (operations)

A.49. Error/Complexity of C-REx on calif1000

MREX error/complexity on calif1000

MREx-Lin

03

100 200 300 400 500 600 700 800 900
complexity (operations)

Figure A.50. Error/Complexity of M-REx on calif1000

132

133

CREX error/complexity on votes
0.5~

0.48
REx-Lin

0.46 -

0.44 -

error

0.42-

CREx-MLP-15
0.4
MLP-15

MLP-20 CREX-MLP-20

0.38-

0.36 I I I I I]
0 100 200 300 400 500 600

complexity (operations)

Figure A.51. Error/Complexity of C-REx on votes

MREX error/complexity on votes

MREX-MLP-20
09

MREx-MLP-15

0.8

MREx-Lin

0.7

error

0.6

0.5

0.4

0.3 I I I I I I I I]
0 200 400 600 800 1000 1200 1400 1600 1800

complexity (operations)

Figure A.52. Error/Complexity of M-REx on votes

CREX error/complexity on prostate

0.64 -
MLP-20

error

0.621- MLP-30

Lint- OCREx-Lin PCREX-MLP-20
CREX-MLP-30
0.6

0581

0.56 I I I I I I]
0 100 200 300 400 500 600 700

complexity (operations)

Figure A.53. Error/Complexity of C-REx on prostate

MREX error/complexity on prostate
09

0.85
08 MREx-MLP-30

MREX-MLP-20
0.75 MREx-Lin

error

0.7

0.65
MLP-20
. MLP-30
Lin
0.6

0.55 I I I I I I]
0 100 200 300 400 500 600 700

complexity (operations)

Figure A.54. Error/Complexity of M-REx on prostate

134

25

CREX error/complexity on abalone

15
Lin

s
5}

1

CREx-Lin
05 MLP-10 %
: MLP-5% & + @CREX-MLP-10
CREX-MLP-5
0 L L L L L L L L L I}
0 50 100 150 200 250 300 350 400 450

Figure A.55.

complexity (operations)

500

Error/Complexity of C-REx on abalone

MREX error/complexity on abalone

351 N
s
MREx-MLP-10
25F
2r MRExX-MLP-5
s
5} v
15F)
Lin
MREXx-Lin
I
1k
ol e | / | |
MLP-10
0 L L L L L L L I}
0 50 100 150 200 250 300 350 400

complexity (operations)

Figure A.56. Error/Complexity of M-REx on abalone

135

0.81-

0.8

0.78 -

Lin
20771
()

0.76 -

0.74 -

MLP-2

136

CREX error/complexity on birth

CREX-MLP-2

MLP-5

CREx-Lin

PCREX-MLP-5

0.73
0

Figure A.57.

105

error

20

40 60

|
80

100 120 140 160 180

complexity (operations)

Error/Complexity of C-REx on birth

MREX error/complexity on birth

MREx-Lin

0.7
0

MREX-MLP-5
MREx-MLP-2
L L L L L L I}
50 100 150 200 250 300 350

complexity (operations)

Figure A.58. Error/Complexity of M-REx on birth

137

CREX error/complexity on kin8fm
Lin CREx-Li
0211 X—-Lin
0.2

0.19

0.18

error

0.151-

0.14r MLP*SI CREX-MLP-5
MLP—ISI

0.13 I I I I : I I]
0 100 200 300 400 500 600 700 800 900

complexity (operations)

jé CREx-MLP-15
1 1

Figure A.59. Error/Complexity of C-REx on kin8fm

MREX error/complexity on kin8fm

14r

121

MREx-MLP-5

0.8

error

MREx-Lin
0.6~

0.4
Lin| B
0.2F
MLPS MLP-15
0 L L L L L I}
0 1000 2000 3000 4000 5000 6000

complexity (operations)

Figure A.60. Error/Complexity of M-REx on kin8fm

CREX error/complexity on kin8fh
0.425 -

Lin
042l REX-Lin

0.415

0411

2 0.405F MLP-25
[

0.4F,

CREX-MLP-5

0.395

039 | CREx-MLP-25

CREx-MLP-20

0.385 I I I I I I I I]
0 500 1000 1500 2000 2500 3000 3500 4000 4500

complexity (operations)

Figure A.61. Error/Complexity of C-REx on kin8fh

MREX error/complexity on kin8fh
0.85

MREX-MLP-20

0.75 MREXx-Lin

MREX-MLP-5

0.7

MREx-MLP-25

error

0.6

0.55

05

0.45

0.4
MLP-5

MLP-25
MLP-20

0.35 I I I I I]
0 1000 2000 3000 4000 5000 6000

complexity (operations)

Figure A.62. Error/Complexity of M-REx on kin8fh

138

139

CREX error/complexity on kin8nm
0.65

0.6 Lin ¢

CREx-Lin

05F

0.45

error

041
MLP-5 jIECREx—M LP-5
0.35-

0.3

MLP-30
MLP-20 I
0.25 %
CREx-MLP-20 CREx-MLP-30
02 L L L L L L L L I}
0 100 200 300 400 500 600 700 800 900

complexity (operations)

Figure A.63. Error/Complexity of C-REx on kin8nm

MREX error/complexity on kin8nm
0.9

MREx-Lin

0.7

Ln | MREX-MLP-5

GE | OMREx-MLP-30

error
o
)

MREX-MLP-20
05F

MLP-5
0.4

0.3

MLP=2011 T mLP-30

0.2 Il Il Il Il Il Il Il Il J
0 500 1000 1500 2000 2500 3000 3500 4000 4500
complexity (operations)

Figure A.64. Error/Complexity of M-REx on kin8nm

140

CREX error/complexity on kin8nh
0.66 -

0.64l Lin %
CREx-Lin
0.62-

0.6

error

0.56 -

0.54 -

MLP-10
05 :[CREx-MLP-10

MLP-20 %CREX—MLP—ZO
0.48 | | | | | | | |]

0 100 200 300 400 500 600 700 800 900
complexity (operations)

Figure A.65. Error/Complexity of C-REx on kin8nh

MREXx error/complexity on kin8nh

MREX-MLP-10

MREX-MLP-20

error

0.45 :
0

Il Il Il J
500 1000 1500 2000 2500
complexity (operations)

Figure A.66. Error/Complexity of M-REx on kin8nh

error

error/complexity on syndata

complexity (operations)

Figure A.68. Error/Complexity on boston

2.81
ACREX-Lin
261
PMREx-Lin
241
22t
oL
218F
[
16 <MREX-MLP
141
VCREX-MLP
12
MLP
s LAD_Boost
X
{RegTree OSVR
g 078P.S) Drucker.AD
08 __Bagging))
10° 10" 10° 10
complexity (operations)
Figure A.67. Error/Complexity on syndata
error/complexity on boston
1
0.8 PMREx-Lin
<IMREX-MLP
0.4 Linear % CREx-Lin
A
TRegTree LAD_Boost x
Bagging MLP
03f zo *® VCREX-MLP
7&P.S *Drucker.AD OSVR
02 L L L I
10° 10" 10° 10° 10*

141

error

error

0.9

0.8

0.6

o.5tRegTree

0.3

error/complexity on calif1000

PMREx-Lin

<IMREx-MLP

LAD_Boost

. 8 z&P.s
% a g o
Linear Bagging ¥Drucker.AD ACREX-Lin
%

v OSVR
MLP CREX-MLP

10

Figure

0.851

0.75-

0.7

0.6~

0.55

0.5

0.4r

0.35

RegTree

10 107 10 10
complexity (operations)

A.69. Error/Complexity on calif1000

error/complexity on votes

MREx-MLP < PMREx-Lin

“Linear
xLAD_Boost ACREx-Lin
Z&P.S
: *Drucker.AD
Bagging

SMLP -
VCREX-MLP SVR O

10

10" 10° 10° 10*

complexity (operations)

Figure A.70. Error/Complexity on votes

142

error/complexity on prostate
0.76 -

MREXx-Lin

0.721-
0.7

0.68 -

_ TRegTree
2066
ﬂ)
*Drucker.AD

0.64- lVéLP
0Z&P.S Bagging

“Linear ACREXx-Lin

0.6 xLAD_Boost

0.58 -

143

<
MREx-MLP

VCREX-MLP

OSVR

0.56 L
10 10
complexity (operations)

10

Figure A.71. Error/Complexity on prostate

error/complexity on birth
0.96 -

0.92-

0.9

2o086F
[
0.841

0.82
+tRegTree

0.8 LAD_Boost

2&P.S o *Drucker.AD

0.78) OBagging

*Linear SMLP VCREX-MLP

0.76 L

<IMREx-MLP

DMRExX-Lin

OSVR

ACREX-Lin

10 10
complexity (operations)

10

Figure A.72. Error/Complexity on birth

error

error

0.8

0.7

0.6

0.4

0.3

0.1

error/complexity on kin8fm

<IMREx-MLP

PMREX-Lin

TRegTree

LAD_Boost @ Bagging

o *Drucker.AD
Z&P.S

“Linear ACREXx-Lin

MLP VCREX-MLP OSVR
L L L I

10

0.8

10 107 10 10
complexity (operations)

Figure A.73. Error/Complexity on kin8fm

error/complexity on kin8fh

0.75 DPMREX-Lin

0.7

0.65

0.6~

0.55T

0.5

<IMREXx-MLP

RegTree

xLAD_Boost
OBaggi

L ging
0.45 8PS O *Drucker.AD

*Linear ACREx-Lin

0.4 “MLP OSVR

0.35

VCREX-MLP

0 1 2 3 4

10

10 10 10 10
complexity (operations)

Figure A.74. Error/Complexity on kin8fh

144

error

0.9

0.8

0.6+RegTree

error

0.5

0.4

0.3

0.2
1

Z&P.S

*Linear

LAD_Boost
o dBagging

error/complexity on kin8nm

ACREx-Lin

<IMREx-MLP

*Drucker.AD

“MLP
VCREX-MLP

145

DPMREXx-Lin

OSVR

0

10

10° 10°

complexity (operations)

10 10

Figure A.75. Error/Complexity on kin8nm

error/complexity on kin8nh

09r
PMRExX-Lin
0.85-
AMREX-MLP
08f
0.75+
07k
+RegTree .
0.65F
#Linear ACREx-Lin
XLAD_Boost
28P.S
06F
Bagging *Drucker.AD
0.55F
o5l SMLP
VCREX-MLP OSVR
045 L L L L I
10° 10" 10° 10° 10* 10°

Figure

A.T6.

complexity (operations)

Error/Complexity on kin8nh

error

18

14r

12F

0.8

06 z&pP.s
o

RegTree

0.4

error/complexity on abalone

<IMREx-MLP

YLinear

PMREX-Lin

Bagging LAD_Boost ACREXx-Lin
$Drucker.AD
=

‘ MLP ‘ VCREX-MLP ‘

QOSVR
L

10°

Figure A.77. Error/Complexity on abalone

10" 10° 10°

complexity (operations)

10°*

10

146

147

REFERENCES

. Alpaydin, E., RFz: Learning A Rule and Fxceptions, Tech. Rep. TR-97-040, In-
ternational Computer Science Institute, Berkeley, CA, 1997.

. Alpaydin, E. and C. Kaynak, “Cascading Classifiers”, Kybernetika, Vol. 34, pp.
369-374, 1998.

. Kaynak, C. and E. Alpaydin, “Multistage Cascading of Multiple Classifiers: One
Man’s Noise is Another Man’s Data”, Proc. 17th International Conference on Ma-

chine Learning, pp. 455-462, Morgan Kaufmann, San Francisco, CA, 2000.

. Kaynak, C. and E. Alpaydin, Cascading Rules and Ezxceptions, Tech. rep., Bogazici
University, Dept. of Computer Engineering, 2001.

. Kaynak, C., Combining Multiple Machine Learning Algorithms to Learn Rules and
Exceptions, Ph.D. thesis, Bogazici University, Dept. of Computer Engineering,
2002.

. Breiman, L., “Bagging Predictors”, Machine Learning, Vol. 24, No. 2, pp. 123-140,
1996.

. Freund, Y. and R. E. Schapire, “A decision-theoretic generalization of on-line
learning and an application to boosting”, Furopean Conference on Computational

Learning Theory, pp. 23-37, 1995.

. Freund, Y. and R. E. Schapire, “Experiments with a New Boosting Algorithm”,
International Conference on Machine Learning, pp. 148-156, 1996.

. Drucker, H., “Improving regressors using boosting techniques”, Proc. 14th Inter-
national Conference on Machine Learning, pp. 107-115, Morgan Kaufmann, San

Francisco, CA, 1997.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

148

Zemel, R. S. and T. Pitassi, “A Gradient-Based Boosting Algorithm for Regression

Problems”, Advances in Neural Information Processing Systems, Vol. 13, 2001.

Duffy, N. and D. Helmbold, “Leveraging for Regression”, Proc. 13th Annual Con-
ference on Computational Learning Theory, pp. 208-219, Morgan Kaufmann, San
Francisco, CA, 2000.

Friedman, J. H., Greedy Function Approrimation: a Gradient Boosting Machine,

Tech. Rep. 7, Stanford University, Dept. of Statistics, 1999.

Ratsch, G., M. Warmuth, S. Mika, T. Onoda, S. Lemm and K.-R. Miiller, “Bar-
rier Boosting”, Proc. 13th Annual Conference on Computational Learning Theory,

2000.

Ridgeway, G., D. Madigan and T. Richardson, “Boosting methodology for regres-
sion problems”, Proceedings of Artificial Intelligence and Statistics, pp. 152-161,
1999.

Karush, W., Minima of Functions of Several Variables with Inequalities as Side

Constraints, Master’s thesis, Univ. of Chicago, Dept. of Mathematics, 1939.

Kuhn, H. W. and A. W. Tucker, “Nonlinear Programming”, Proc. 2nd Berkeley
Symposium on Mathematical Statistics and Probabilistics, pp. 481-492, Univ. of
California Press, 1951.

Mercer, J., “Functions of Positive and Negative Type and Their Connection with
the Theory of Integral Equations”, Philos. Trans. Roy. Soc. London, Vol. A 209,
pp. 415-446, 1909.

Smola, A. J., B. Scholkopf and K.-R. Miiller, “The connection between regulariza-
tion operators and support vector kernels”, Neural Networks, Vol. 11, No. 4, pp.

637-649, 1998.

Burges, C. J. C., “Geometry and Invariance in Kernel Based Methods”, Advances

20.

21.

22.

23.

24.

25.

149

in Kernel Methods — Support Vector Learning, pp. 89-116, MIT Press, Cambridge,
MA., 1999.

Scholkopf, B., . P. Bartlett, A. Smola and R. Williamson, “Support Vector Regres-
sion with Automatic Accuracy Control”, Proc. 8th Int. Conf. on Artificial Neural
Networks, Perspectives in Neural Computing, pp. 111-116, Springer Verlag, Berlin,
1998.

Jacobs, R. A., M. I. Jordan, S. J. Nowlan and G. E. Hinton, “Adaptive Mixtures
of Local Experts”, Neural Computation, Vol. 3, No. 1, pp. 79-87, 1991.

Blake, C. and P. M. Murphy, “UCI Repository of Machine Learning Databases”,

http://www.ics.uci.edu/ mlearn/MLRepository.html.

Hosmer, D. and S. Lemeshow, Applied Logistic Regression, John Wiley & Sons
Inc., second edn., 2000.

Chang, C.-C. and C.-J. Lin, “LIBSVM: a Library for Support Vector Machines

Version 2.31)”, http://citeseer.nj.nec.com/chang011libsvm.html.
P J g

Alpaydin, E., “Combined 5x2cv F Test for Comparing Supervised Classification
Learning Algorithms”, Neural Computation, Vol. 11, No. 8, pp. 1885-1992, 1999.

